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PhD Program in Artificial Intelligence

Barcelona, 2011

./ThesisFigs/logo-iri-csic-upc.eps


Universitat Politècnica de Catalunya
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institute and its people already constitute an important part of my life. I

will always be grateful of them.

I would like to thank Enric Celaya for his lessons about research, mainly for

teaching me to evaluate each idea exhaustively and rigorously. I appreciate

his constant availability to deeply discuss any idea and his capability of

analysing in detail every document I left on his desk. I have enjoyed very

much our long conversations scrutinizing the secrets of machine learning,

our complex mental journeys searching for hidden treasures, sometimes non-

existent. Now that the thesis is finished, I hope we can continue having these

rich conversations.

I am also grateful with Carme Torras for her support and valuable advice.

I have learned a lot from her. I appreciate very much her availability and

her positive predisposition. She gave me the opportunity to participate

in important research projects that have contributed significantly to my

scientific education.

I would also like to thank Ulises Cortés for his help at the beginning of my
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Abstract

In this thesis we propose an approach for generalization in continuous do-

main RL that, instead of using a single function approximator, tries many

different function approximators in parallel, each one defined in a different

region of the domain, that compete to provide the inference at a given in-

put. Using a competitive strategy increases the opportunities of a having

a good approximator among the evaluated ones, avoiding the restriction

of being attached to the performance of a single approximator. The pro-

posed approach permits to reduce the number of experiences needed for

convergence, and to produce more stable convergence profiles, with respect

to using a single function approximator. The reduction in the number of

experiences is obtained since, at each evaluated point, there is usually a

competing approximator that generalizes better than the single global one.

The more stable convergence profile is obtained since, if one approximator

gets its approximation degraded, it will be supported by other approxima-

tors that usually perform better, keeping a good overall performance of the

system. For the selection of the best approximator in a point, the approach

associates to each approximator a relevance function which quantifies the

quality of its approximation at a given input. The approximator with high-

est relevance in the input is selected for the inference. The relevance func-

tion is defined using a parametric estimation of the sample variance, and

a parametric estimation of the sample density in the input space, which

are used to quantify the accuracy and the confidence in the approxima-

tion at that input, respectively. All the parametric estimations involved in

the competition, i.e. the cumulative reward, the sample variance, and the

sample density in the input space, are obtained from a probability density

model in the input-output space embedded in each approximator. From



this joint density model it is possible to obtain the conditional probability

distribution of the cumulative reward values conditioned to a situation and

an action. From this distribution we can obtain an estimation for the ex-

pected value of the cumulative reward at that situation and action, which

is used for the inference of the approximator, and the variance of the cumu-

lative reward values, which is used in the relevance function. The sample

density in the input space is obtained from the number of samples collected

in the approximator domain and the probability distribution in the input

space obtained by marginalizing the output variable in the joint density

model. The density model is represented with a Gaussian Mixture Model.

The parameters of the model are updated using a new approach of online

Expectation-Maximization which uses the density information to produce

a forgetting based on the new information provided rather than on time,

preventing the typical distortion occurring when a time-dependent forget-

ting is used to forget past entries in the approximation of a non-stationary

function.
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Chapter 1

Introduction

Why humans, and animals in general, are so capable of learning to act, and to make

decisions in situations never experienced? This is still an open question that tries to

find an answer in different fields like neurophysiology, psychology, and, more recently,

Artificial Intelligence (AI) [76]. The progresses made in the last decades in computer

science motivated the researchers to model animal learning in computers, not only to

better understand the underlying mechanisms of animal behaviour, but also to develop

artificial agents capable of automatically learn to perform tasks.

The underlying idea of many learning to act paradigms is that an agent learns the

cause-effects resulting from action executions and applies this knowledge to make deci-

sions during a task. The learning of cause-effects is approached in different ways by the

different learning paradigms, ranging from the learning of correlations between events,

behaviours, and rewards, corresponding to the postulates of instrumental conditioning

[79], to the learning of complex cognitive cause-effect relations as those postulated by

Piaget in his theory of cognitive development [65].

Usually, in AI, the “cause” part of a cause-effect relation consists in a description

of a situation in which the agent might be, and an action executable in this situation.

The “effect” part, instead, codes the consequences of causes, either by a description

of the situation reached after the action execution, a description of task-related eval-

uative feedback, or reward, obtained from the environment after the action execution,

or a combined description of evaluative feedback and situation. The coding of effects

involving situations are mainly used in deliberative approaches, where the agent rea-

1



1.1 Reinforcement Learning

sons about sequences of cause-effects that would permit to achieve a goal. Examples of

these approaches are the symbolic reasoning strategies, like logic-based planners [44],

and the planning methods based on Dynamic Programming [44]. On the other hand,

the paradigms which code effects in the form of reward values are usually reactive ap-

proaches, where the agent selects at each situation the most rewarded action, without

further deliberation. The most outstanding reactive approaches are those of Reinforce-

ment Learning [40, 81], which are widely used for learning to act from experience.

Disregarding the type of cause-effects learned, there are two main aspects to tackle

for the learning of cause-effect relations. On the one hand, the mechanisms through

which the consequences of actions will be learned should be defined. This is the main

concern of behavioural learning approaches, like those of Reinforcement Learning. On

the other hand, it should be determined how this knowledge is represented so as to

use it for decision making in new situations. This problem is faced using techniques of

machine learning for knowledge representation [21, 31, 51], which permit to generalize

the knowledge of the observed cause-effects to predict the effects of actions in unforeseen

situations.

This thesis is about a new technique for generalization in Reinforcement Learning.

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a task-directed learning paradigm for learning to act

from interaction with the environment, which is suitable for problems where it is difficult

to teach an agent what action to execute at each situation but results more simple to

let the agent learn autonomously how to select the best action for the task at each

situation. The learning takes place from experiences consisting in executing actions

in certain situations, and receiving from the environment, at each action execution, a

numerical feedback that barely indicates how good, or bad, an action is in the context

of the task.

RL was created from the efforts of modelling the animal learning paradigms of clas-

sical and instrumental conditioning [82, 92]. Classical conditioning postulates, in a

broad sense, that animals learn to correlate an event, denoted as unconditioned stim-

ulus, with a preceding event, called conditioned stimulus. The reference experiment of

2



1.1 Reinforcement Learning

classical conditioning was carried out by Pavlov [61]. Pavlov demonstrated how a dog

is able to correlate the presence of food with the ring of a bell, if, repeatedly, the ring of

a bell is presented just before the food. Instrumental conditioning, on the other hand,

postulates that animals are capable of learning correlations between specific behaviours

in certain situations with rewards and punishments. The first in demonstrating this

animal capability was Edward Thorndike [88], postulating in his ”Law of Effects” that

animals strongly connect situations with more rewarded behaviours, and that these

behaviours are more likely to occur when these situations are presented. The corre-

lation between behaviours, situations, and rewards or punishments was lately studied

and quantified by Skinner under the name of Instrumental Conditioning [79]. Skin-

ner measured the strength of these correlation by placing animals inside a chamber,

and stimulating them in a controlled way with rewards or punishments signals as a

consequence of their behaviours.

The initial efforts of modelling in computers the classical conditioning [84], and the

posterior extensions of this model to be used in control applications [18, 82], gave rise

to the formalization of the so successful temporal-difference (TD) learning methods

[81, 83], which constitutes one of the major milestones in the formalization of RL. TD

methods are basically prediction methods suitable for multi-step prediction problems

where the outcome to be predicted comes at the end of a sequence of observations.

TD also provides a way of dealing with the temporal credit assignment problem [82]

of determining which observations in the sequence deserve more credit in producing

the outcome. These features make TD very suitable to be used in RL problems, which

are usually multi-step prediction problems, and where the assignment of credits to

the actions that are responsible for the success or failure of a task results crucial for

the learning to succeed. The definitive formalization of the TD was given by Sutton

in 1988 [83]. Until that work, TD was applied in RL to predict that a low or high

reinforcement is forthcoming with the presence of a state. This knowledge alone could

not be used for control applications as it does not provide any information associated

to actions. Thus, in order to use TD in control problems, it needed either the model of

state transitions with actions, that would permit to follow the track of most rewarded

states, or to explicitly code the function that maps situations to actions, stored in an

actor, that indicates which action to execute at each state.

3



1.2 Generalization in Reinforcement Learning

The use of TD for control application was lately approached and improved by the

work of Watkins [92]. This work constitutes the other major milestone in RL, and

was elaborated as a new model of Instrumental Conditioning inspired in the optimal-

ity argument. This argument claims that evolution provided animals with the ability

of learning optimal behaviours, in the same way as it provided sophisticated bodies

adapted to survive in their niches. Watkins stated that the optimality argument in-

dicates that the function of instrumental conditioning is to learn to behave optimally,

and proposed the use of tools from optimal control, in particular from Dynamic Pro-

gramming [19], to model such an optimal behaviour. However, his aim was to model

the learning mechanisms of instrumental conditioning in a simple way, using just ex-

perience of actions in situations, as it occurs in actual animal learning, avoiding the

complicated calculations involved in conventional DP methods. Thus, using TD as the

more elaborated model for animal learning, he proposed a new TD method called Q-

Learning that, instead of estimating the forthcoming rewards associated to states for

a given behaviour, estimates directly the highest possible forthcoming rewards associ-

ated to actions in states for the optimal behaviour. In this way, Q-Learning provided

a tool for approximating incrementally the DP equations 1 , bringing together TD and

Optimal Control, and establishing the basement for the definitive formalization of RL

in terms of Dynamic Programming and Markov Decision Processes [81, 92].

1.2 Generalization in Reinforcement Learning

During the initial stages of RL the main efforts were focused on the formalization of

the RL methods, rather than in the way the knowledge is represented, in order to

simplify the interpretation of the experiments result. Thus, the formalization of the

RL methods were carried out assuming that the number of states and actions was finite,

and that the utility function, that maps states, or state-action pairs, to a prediction of

forthcoming rewards, is represented in a plain tabular way. Each state, or state-action,

had associated an utility value, which was updated independently of each other, making

necessary that all the entries in the table should be experienced many times in order

to learn the utility function.
1Watkins was a bit surprised that such a simple formulation for the incremental approximation of

the dynamic programming equations was not proposed before for RL, to a point that he assumed as
very likely that a similar formulation so far existed.

4



1.2 Generalization in Reinforcement Learning

The increasing interest in applying RL methods to more complex control applica-

tions, with large or infinite number of states and actions, provoked that the tabular

representation were no longer applicable, as it may require an infeasible number of

experiences for the learning to take place. This limitation generated the necessity of

a more abstract state representation that permits to generalize the knowledge of the

value at one state, or state-action pair, to other similar states, or state-action pairs,

and, hence, reducing the number of experiences required for learning.

Some of the early works of RL already approached the problem of generalization.

One of the first methods for generalization in RL was proposed in the work of Barto

and Sutton [18] for the control task of the pole-balancing. They based the approach on

the former work BOXES by Michie and Chambers [49], which consisted in performing

a partition of the state space, and calling to each part a box. Each box provides an

aggregation of states, where all the states in a box received the same value, and where

the experience at each state in a box is generalized to the other states aggregated

with it. Michie and Chambers pointed out that there are many box configurations

that would prevent learning to occur, and suggested the possibility of creating boxes

by splitting and merging them during run-time, without an initial restriction in the

boundaries. This idea was lately developed under the name of variable resolution

techniques [53, 54].

The necessity of generalization in RL was also remarked in the PhD theses of Sutton

[82] and Watkins [92]. Sutton distinguished between two credit assignment problems:

temporal credit assignment and structural credit assignment. While temporal credit

assignment deals with the identification of which of the taken actions deserve more

credits in obtaining the final outcome, structural credit assignment deals with the

assignments of credits to the internal decision mechanisms that are responsible for

the action selection. Structural credit assignment deals with the way in which the

reward function is represented, and how the credit of correct decisions in a state is

distributed to other similar states. Despite he did not approach the structural credit

assignment problem, he pointed out that both credit assignment problems are separable,

and that the results obtained in his work can be combined with techniques that face

the structural credit assignment using different strategies of knowledge representation.

Watkins, on the other hand, also pointed out the necessity of generalization in RL,
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and mentioned the convergence problems that may arise if the generalization of the

experience in a state is transmitted to other states that would obtain a different value

if they were experienced. He did not tackle theoretically the problem of generalization

in RL, but he implemented a generalization method based on the CMAC function

approximation [15], and analysed the convergence profile of this single implementation.

Many techniques for generalization in RL have been proposed during the last

decades [30, 37, 53, 54, 59, 68, 70, 73] which, in general, consist in a combined learning

strategy that, on the one hand, learn the values resulting from actions execution, and,

on the other hand, generalize this knowledge using techniques borrowed from other

fields of machine learning like pattern recognition [21] and concept learning [51].

Disregarding the generalization method used, there are some problems inherent to

RL that the generalization methods should be able to deal with. During the learning

process the value function estimation varies, not only as a consequence of the policy

evaluation process, that estimates the value function for the current policy, but also as a

consequence of the policy improvement mechanisms, that change the underlying policy

towards the optimal one. These mechanisms make the estimation of the value function

highly non-stationary. Another difficulty for generalization methods in RL is that data

arrive sequentially, i.e. one at a time, and are sampled along trajectories dictated by

the underlying dynamics of the environment, and influenced by the action selection

strategy. This produces a very biased sampling of the points used for the estimation,

which may in turn produce large distortions in the estimations and instabilities in the

convergence. Thus, the generalization methods should be robust to the non-stationary

target function and biased sampling problem in order for learning to take place.

In general, methods which perform local regressions [7, 30, 59] deal better with the

biased sampling and non-stationarity problems as they restrict the adaptation of the

function to smaller regions, at the expense of the generalization performed, establishing

a trade-off between locality and generalization. Another class of methods that copes

well with the mentioned problems are fitted value iteration methods [37, 68, 70]. Fitted

value iteration methods are batch, memory-based, approaches which perform one step

of function approximation over a fixed set of points, which should provide samples

representative enough for the learning to take place 1 , and one step of value adaptation,
1In spite that providing relevant samples in advance permits to deal well with the problem of biased
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always on these points, through a conventional RL method. These two processes, fitting

the value function and the value function adaptation on the set of points, are carried

out intertwined until some convergence criterion is fulfilled.

The aforementioned problems of generalization in RL may appear in different de-

grees at different regions of the domain, and at different stages of the learning process.

Then, the function approximator selected should permit, at least, to cope with the

approximation requirement of the most demanding region, no matter how simple the

approximation requirements result in other regions of the domain. The uncertainties

related to the actual shape and complexity of the value function at all the regions of the

domain and during the whole learning process make the selection of the proper function

approximation very complicated. This selection is done, in many cases, empirically, by

evaluating the performance of different approximators until one that seems to work

properly is found.

However, no matter how well we define the function approximation method to use,

if we use a single function approximator, we cannot avoid the overall performance of

the system to be subject to the performance of that approximator. A failure in the

approximation in any region of the domain may produce a failure in the whole learning

process.

1.3 Our Proposal

In this thesis we propose an incremental approach for generalization in continuous do-

main RL that, instead of using a single function approximator, tries many different

function approximators in parallel, each one defined in a different region of the do-

main. We argue that this strategy may increase the opportunities of a having a good

approximator among the evaluated ones, avoiding the restriction of being attached to

the performance of a single approximator. This argument is hold under the assumption

that a rich enough set of approximators is generated, and that there is a mechanism

for selecting the approximator that best generalizes at each evaluated point.

sampling, finding the proper set of samples may be rather complicated in complex application, and
constitutes one of the major limitations of fitted value iteration methods.
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Our working hypothesis is that the competitive strategy of function approximators

will permit to reduce the number of experiences needed for convergence, and to pro-

duce more stable convergence profiles, with respect to using a single global function

approximator. The reduction in the number of experiences might be obtained since, at

each evaluated point, there will be usually an approximator that generalizes better than

a single global approximator. The more stable convergence profile might be obtained

since, if one approximator gets its approximation degraded, it will be supported by

other approximators that usually perform better, keeping a good overall performance

of the system.

The idea of using a competitive structure is inspired in the work of Edelman [32],

which claims that the robustness and flexibility of the brain is given by its competitive

nature. This idea is formalized under the theory of Neuronal Group Selection, which

states that the brain is organized in neuronal groups that are activated in parallel with

a stimulus and that only one produces the response in a competitive, winner-takes-all,

fashion. One fundamental postulate of this theory is the degeneracy concept, which

entails that non-isomorphic groups of neurons must be isofunctional so as to match a

large variety of stimuli while having similar functionality, which increases the chances

of a good response.

1.4 Objective

The main objective of the thesis is to devise a method for generalization in Reinforce-

ment Learning using a competitive strategy of function approximators which is able

to reduce the amount of experiences needed for the learning of the reward function,

and to produce more stable convergence profiles, than using a single global function

approximator.

1.5 Contributions

The contributions of the thesis are the following:

1. A new incremental, model-free, approach for function approximation in contin-

uous domain RL which uses tools for density estimation to achieve accurate ap-
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proximations of the value function in continuous domains [6–8]. The density

information permits, in addition to the function approximation, to measure the

accuracy with which the approximation is done through an estimation of the

variance in the approximation (a remarkable feature uniquely attributed so far

to Gaussian Processes methods [33]). Even more, the density information also

permits to measure the confidence with which the estimations are done in the

evaluated point, which is used to regulate the exploration-exploitation strategy.

The approach outperforms state of the art methods in the benchmark application

of the inverted pendulum with limited torque.

2. A new approach of on-line Expectation-Maximization (EM) for the estimation of

a mixture density model parameters [7, 8]. The approach uses the density infor-

mation to forget past experiences in the same proportion of the new experiences

provided, rather than as a function of time. This prevents useful experiences of

regions weakly related to the current sample to be wrongly discarded, providing

an updating mechanism which is robust to the biased sampling problem.

3. A new incremental, model-free, approach for generalization in continuous do-

main RL using a competitive function approximation strategy [10, 11]. Each

approximator consists in a probability density model defined in a specific region

of the domain that provides a continuous function approximation of the value

function. The criterion to select the best approximator in a point consists in

selecting the approximator that minimizes the variance of the values (accuracy),

and maximizes the density of samples (confidence) in the evaluated point. New

approximators are generated every time the best approximator in a point does

not fulfil the approximation requirement. The proposed system produces a faster

convergence rate and a more stable convergence profile with respect to a single

non-parametric function approximator using probability density estimation [8],

and with respect to state of the art approaches in the benchmark applications of

the inverted pendulum, the mountain-car, and the cart-pole balancing.

Some of the ideas that motivated the development of the approaches proposed in

this thesis were originated from our previous contributions for generalization in RL

[1–5]. On the other hand, some of the concepts presented in this thesis were also
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used to develop a supervised learning method that rapidly learns planning operators

from few action experiences [12–14, 94], with good results in real robot applications

[13]. The approach is based on the same underlying concept of a competitive strategy,

where many alternatives of cause-effect explanations are evaluated in parallel, and the

most successful ones are used to generate basic operators for planning. The success

of a cause-effect explanation is evaluated by a probabilistic estimate that takes into

account the density of samples as a measure of the confidence in the estimation. Since

supervised learning is out of the scope of this thesis we refer the readers to the cited

works for further details on this method.

1.6 Outline of the Document

The structure of the document is the following. Next chapter presents an overview of

the formalization of the paradigm of Reinforcement Learning, an introduction to the

problem of generalization in RL, and a description of the state of the art approaches

that address this problem. Then, in chapter 3, we detail the advantages of using

a competitive strategy for function approximation, and present the mechanisms of a

competitive strategy called degenerate function approximation (DFA). In chapter 4 we

propose a new approach for FA in RL based on probability density estimations. This

approach will be lately combined with the DFA approach in the formalization of the

method for FA in RL using a competitive strategy. This is the thread of chapter 5.

The thesis document ends with a conclusion chapter.
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Chapter 2

Reinforcement Learning

Reinforcement Learning (RL) [40, 81] is a learning paradigm where an agent should

learn to take (optimal) decisions for the execution of a task, using only its own experi-

ence and a task-related evaluative feedback, known as immediate reward, provided by

the environment after each action execution.

RL was mainly originated from the efforts of modeling the instrumental conditioning

of animal learning theory [18, 82, 84, 92], which claims that animals learn associations

between actions in certain situations and rewards or punishments. Analogously, many

RL methods provide mechanisms that permit an artificial agent to learn associations

between task-related reward values with situations, or with actions in situations, that

indicate how good a situation, or an action in a situation, is with respect to a task in

the long run. This information is used by the agent to make decisions, selecting at each

situation the most rewarded action, or the action that would lead to the most rewarded

next situation.

The formalization of RL is carried out in terms of Markov Decision Processes (MDP)

[60], as models of the environment, and Dynamic Programming (DP) [19], that provides

the theoretical background to find optimal behaviours using such models. However,

contrarily to DP, RL does not assume the existence of a previous MDP model of the

environment, which implies that the only way of knowing the consequences of actions

is by an exhaustive exploration of all of them at all the situations. This is not possible

in applications with many states and actions, demanding to generalize each experience

to infer the consequences of actions in other situations.
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This chapter briefly reviews the theoretical background of RL, first introducing, in

the next section, the basic concepts of MDP and DP used for the formalization of RL,

following, in section 2.2, with a description of the most known RL methods, to lately

present, in section 2.3, the main aspects concerning the problem of generalization in

RL, exemplifying some of the state of the art approaches.

2.1 Markov Decision Processes and Dynamic Program-
ming

An MDP assumes that the environment is described using a set of discrete states, S, a

set of actions executable at those states, {a = A(s), s ∈ S}, and the one-step dynamics

of the environment which is described with two probability models. The first one is the

probability of transition from any initial state s to any final state s′, after the execution

of an action a,

Pa
ss′ = P [st+1 = s′|st = s, at = a]. (2.1)

The second is a model of the probability distribution of an immediate reward r asso-

ciated to each state transition. In the case of DP, this probability distribution is only

parametrized with its expected value,

Ra
ss′ = E[rt+1|st = s, at = a, st+1 = s′]. (2.2)

Note that the probability of state transitions (2.1) only depends on the state ob-

served at time t, under which circumstance the process is said to fulfill the Markov

property. If this property is not fulfilled, i.e. if the probability of state transition also

depends on states visited before time t, then the problem is said to be non-Markovian,

and the theory here developed is no longer applicable 1.

A MDP also assumes the existence of a decision maker, which selects the action

to execute at each state. Normally, the decision maker is a control strategy, which in
1However, in many cases, it is possible to transform a non-Markovian process into a Markovian

one, under a redefinition of a state which involves past observations [46].
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the field of DP and RL is referenced as the action policy, and indicates the probabil-

ity Π(s, a) of selecting an action a at state s. In the scope of this introduction we

will assume that the action policy is deterministic and described with a function that

indicates which action is selected at each state, a = π(s).

In general, the agent goal is to maximize the reward it receives in the long run.

At each particular run the agent gets rewards depending on the action policy followed.

The cumulative sums of the rewards obtained from following a particular action policy

π, starting at a state s, is calculated as,

Rπ(s) = rt+1 + γrt+2 + γ2rt+3 + . . .

=
∞∑

k=0

γkrt+k+1, (2.3)

where the discount factor γ ∈ [0, 1) regulates the influence of future rewards in the

sum. Equation (2.3) is defined as the return which values may vary at different runs

depending on the probabilities of transitions (2.1) and the reward obtained after each

action execution. Under these circumstances, a good prediction of the cumulative sum

of rewards starting at state s and then following policy π is the expected value of the

return,

V π(s) = E[Rπ(s)]. (2.4)

The function V π(s) is known as the value function for policy π. The values V π(s) can

be calculated using the set of equations,

V π(s) =
∑

s′
Pa

ss′
(
Ra

ss′ + γV π(s′)
)
, (2.5)

where a = π(s), and s′ = st+1, is the state perceived at time t + 1. Equations (2.5) are

known as the Bellman equations [19]. The expected return can also be associated to

an action a in state s,
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Qπ(s, a) = E[Rπ(s, a)] (2.6)

=
∑

s′
Pa

ss′
(
Ra

ss′ + γV π(s′)
)
, (2.7)

where a is any of the possible actions in s. The function Qπ(s, a) is known as the

action-value function, or simply the Q-function, and is the expected return that would

be obtained after executing action a at state s and then following the policy π. Note

that the difference between the Bellman’s equations in (2.5) and (2.7) is that the action

referenced in (2.5) corresponds to the followed policy, a = π(s), while in (2.7) references

any possible action in s.

The action-value function Qπ(s, a) is useful in control applications as it provides a

straight way of knowing the result of executing an action, permitting to select at each

state the action with highest expected return. The policy resulting from selecting the

action with highest expected return at each state is known as the greedy policy.

We are now in position to define the optimal action policy, π∗, as the one that

permits the agent to get the highest possible expected return. In terms of the value

function, the optimal policy π∗ fulfils the inequality V π∗
(s) ≥ V π(s), for all s ∈ S, and

for all the policies π in the policy space. The value function V ∗(s) is called the optimal

value function. The optimal value function can be computed through the maximization

equations,

V π∗
(s) = max

a

∑

s′
Pa

ss′
(
Ra

ss′ + γV π∗
(s′)

)
, (2.8)

which are known as the Bellman optimality equations [19]. Combining (2.7) and (2.8)

we can see that an optimal value function V π∗
(s) has associated an optimal action-value

function Qπ∗
(s, a) through the equations,

V π∗
(s) = max

a
Qπ∗

(s, a). (2.9)

On the other hand, from equation (2.6) we have,
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Qπ∗
(s, a) = E[Rπ∗

(s, a)]

= E[
∞∑

k=0

γkrt+k+1]

= E[rt+1 + γ

∞∑

k=0

γkrt+k+2]

= E[rt+1 + γV π∗
(st+1)]. (2.10)

Replacing (2.9) in (2.10) we get the expression,

Qπ∗
(s, a) = E[rt+1 + γ max

a′ Qπ∗
(st+1, a

′)] (2.11)

=
∑

s′
Pa

ss′

(
Ra

ss′ + γ max
a′ Qπ∗

(s′, a′)
)

. (2.12)

Equations (2.12) are the Bellman optimality equations to calculate the optimal action-

value function.

Broadly speaking, DP proposes methods to find a solution to the Bellman optimality

equations. The basic mechanism of DP consists in an iteration between two processes:

policy evaluation, and policy improvement. Policy evaluation is the process to calculate

the value function, or the action-value function, for a given fixed policy π. Policy

improvement, instead, is a process that produces an improved policy π′ from the learned

value function V π(s), or action-value function Qπ(s, a), of the previous policy π. One

way of policy improvement is to define the improved policy π′ as the greedy policy

resulting from selecting at each state s the action with highest Qπ(s, a). Once the new

policy π′ is defined, the policy evaluation process is carried out again to determine

V π′
(s) or Qπ′

(s, a). The iteration between these two processes is called policy iteration,

and is repeated until no further improvements of the value function is obtained, moment

in which the underlying policy is the optimal, π∗.

In policy iteration, the policy evaluation process can be stopped before its conver-

gence to carry out the policy improvement, keeping the convergence guarantees [81].

A special case of policy iteration, known as value iteration, is when the policy evalua-

tion is stopped after only one sweep of updating at all states. For instance, equations
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(2.12) implements the value iteration process, where the one-step policy evaluation is

combined with the policy improvement in the same formula.

2.2 Reinforcement Learning

Reinforcement Learning pursues the same goal as DP: the learning of the optimal

policy in an environment modelled as a Markov Decision Process. Even more, many

RL methods and DP share the same strategy to learn the optimal policy of learning

the optimal value function V π∗
(s), or action-value function Qπ∗

(s, a), and then deriving

the optimal policy from it. However, contrarily to DP, in RL it is not assumed that

the model of the environment is provided in advance, and the learning of the optimal

functions is performed using only the agent own experience. These RL methods are

fully specified in terms of Dynamic Programming and Markov Decision Processes, and

may be considered as sampled versions of the DP methods.

The lack of knowledge about the world dynamics implies that, the only way of

knowing the consequences of executing actions is the exhaustive exploration of all the

actions in all the states. On the other hand, the agent not only should learn the

consequences of actions (policy evaluation) but also use this knowledge to improve the

policy followed so far (policy improvement). Since these two processes are necessary

to learn the optimal policy, there is a trade-off between exploring actions so as to

learn the consequences of actions, and exploiting the knowledge so as to improve the

policy. This problem of deciding when to explore and when to exploit is known as the

exploration-exploitation trade-off [81] which is inherent to RL applications.

RL methods that use the strategies of DP to find the optimal policy can be classified

in two groups: those that first approximate a MDP model of the environment and

afterwards apply conventional DP techniques to find the optimal expected returns; and

those that directly estimate the value functions, or action-value functions, using an

incremental approximation of the Bellman equations. The former methods are denoted

as model-based RL approaches, while the later are known as model-free RL approaches.

In the case of model-based RL methods, as well as in DP methods, the updating of the

value function is done with a full backup, i.e. considering all the possible transitions at

the evaluated state, through (2.1) and (2.2). Model-free RL methods, instead, update
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the value associated to a state, or state-action, using just the information provided by

the experienced transition, i.e. with a sample backup. The incremental formula to do

sample backup in RL is Temporal-Difference [83].

2.2.1 Temporal-Difference

Temporal-difference (TD) is essentially a prediction tool suitable for multi-step predic-

tion problems, where the value to predict comes at the end of a sequence of events. The

idea behind TD is that the predictions are updated using the difference between two

predictions in the sequence, rather than the difference between the actual outcome and

a prediction as it is normally carried out in supervised learning 1 . TD takes benefit

from the information contained in the temporal correlation of the observations instead

of treating them as temporally independent, and updates the prediction at each obser-

vation based on the predictions of other observations in the sequence. This permits to

achieve convergence using less examples than supervised learning methods [83]. An-

other remarkable feature of TD is that it provides a way of dealing with the temporal

credit assignment problem [82] of determining the influence of each of the executed

actions in the expected return. All these features make TD a very suitable strategy to

be used for the incremental approximation of the expected returns in model-free RL.

The most basic formula of TD in RL is TD(0) which is used to update incrementally

the value function for a given fixed policy π [82, 83] 2,

V π
i+1(s) = V π

i (s) + ηi

(
r(s, a) + γV π

i (s′)− V π
i (s)

)
, (2.13)

where i indicates the iteration step, r(s, a) is the reward obtained after executing action

a in s, s′ is the next state obtained after the action execution, γ is the discount factor,

and ηi is a step-size parameter, or learning coefficient, that determines the proportion
1However, for single-step prediction problems, TD and conventional supervised learning methods

result equivalent.
2 Sutton mentioned in his work [83] that, in order to define a TD method, it is necessary to establish

the desired relationship between predictions at different times in the sequence, and, using this relation,
to construct an updating rule that permits to correct the predictions to the proper values. For the case
of the incremental estimation of the expected return, he suggested the updating rule used finally in the
TD(0) equation: rt+1 + γV (st+1) − V (st).
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of updating of the old estimation using the correction factor,

δ = r(s, a) + γV π
i (s′)− V π

i (s). (2.14)

The correction factor δ is usually referenced as the TD error or Bellman error [26].

In order to assure convergence to the value function V π(s), the coefficient ηi should

fulfil the requirements for stochastic approximations [43],

∞∑

i=1

ηi =∞, (2.15)

and,

∞∑

i=1

η2
i <∞. (2.16)

Condition (2.15) guarantees that the learning coefficient keeps a large enough value

to permit the correction of past estimations with new incoming samples. Condition

(2.16), in turn, ensures that the learning coefficient decreases to zero in the limit to

permit convergence.

Equation (2.13) performs the updating of the expected return of only one state: the

one which was observed immediately before the action execution. However, TD also

permits a more efficient use of the experience by updating the value function of more

than one state, using what is known as eligibility traces [81]. Eligibility traces consists

in keeping a trace over the most recently experienced states, associating to each state

an additional parameter e(s) called eligibility. The eligibility of a state indicates how

”eligible” is a state to be updated with the current TD error δ. It permits to spread

the current experience over past states which also conduct to the current reinforcement

event, though in lesser proportion than the state experienced just one step before. The

eligibility of a state, hence, should indicate how long ago a state was experienced, and

is usually calculated as [81],

et(s) =
{

γλet−1(s) if s �= st

γλet−1(s) + 1 if s = st,
(2.17)
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where γ is the discount factor, and λ is a trace-decay parameter that regulates the

”forgetting” effect of past observations. The eligibility decays with a factor γλ when

the state is not experienced, and gets its value increased by one when the state is the

one currently experienced. The resulting TD formula using eligibility traces is simply

(for clarity, from hereafter we omit the iteration reference),

V π(s)← V π(s) + η
(
r(s, a) + γV π(s′)− V π(s)

)
e(s), (2.18)

which is known as TD(λ). TD(λ) differs from TD(0) in the factor e(s), and in that the

TD(λ) should be applied to all the states instead of just the state one-step before the

reinforcement event.

2.2.2 Actor-Critic

The TD methods presented in the previous section provide an incremental version of

the policy evaluation mechanism, since it permits to find the value function for a given

policy π, incrementally, using action experiences. However, in order to find the optimal

value function, it is necessary to perform also policy improvement. In this case, TD(0)

or TD(λ) may require either the MDP model of the environment, or a complementary

module called an actor, in order to complete the policy iteration process. In case the

MDP model is provided, it would be used to evaluate which of the possible actions in a

state may produce the most rewarded next state and thus update the values following

the greedy strategy. On the other hand, if an actor is provided, it would be used to

explicitly code the probabilities of action execution at each state which are updated

towards the optimal policy with the information provided by the TD method: if TD

predicts an improvement of the reward with an action execution (positive TD error)

then this action gets its probability of being executed increased, while this probability

is decreased in the converse case.

The structure using a TD method and an actor is known as the Actor-Critic archi-

tecture [18], where the role of the TD is to criticize the action selected by the actor by

means of the TD error. This architecture was extensively studied in Sutton’s thesis [82],

and currently constitutes one of the alternatives for the implementation of a control

system using RL [81].
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Algorithm 1 SARSA
Initialize Q(s, a)
observe current state s
select action a in s according to current action policy
loop

execute a, get r(s, a), and observe new state s′

choose a′ in s′ using, for instance, the ε-greedy strategy (policy improvement)
generate q(s, a) = r(s, a) + γQ(s′, a′)
Q(s, a)⇐ Q(s, a) + η (q(s, a)−Q(s, a)) (policy evaluation)
s⇐ s′

a⇐ a′

end loop

2.2.3 SARSA

SARSA [75] is an algorithm that provides an alternative to carry out policy iteration

using TD but without the need of an actor. It uses the TD formula to estimate the

action-value function for a given policy, instead of the value function as in (2.13),

Qπ(s, a)← Qπ(s, a) + η
(
r(s, a) + γQπ(s′, a′)−Qπ(s, a)

)
, (2.19)

where r(s, a) is the reward obtained after executing any action a in s, and a′ = π(s′).

Given that the updating of the action-value function is done for a given fixed policy,

SARSA, as well as TD(0), are said to be on-policy approaches.

The estimation of the action-value function simplifies the process of policy improve-

ment. While the policy evaluation step is carried out with formula (2.19), the policy

improvement step can be done by simply selecting in the resulting state s′, an action

a′ using an ε-greedy strategy, as explained in algorithm 1.

Due to the exploration-exploitation requirements, a random component must be

added to explore all the actions and hence have confident estimations of the action-

value function. This could be carried out, for instance, by adding a small random

component ε to the greedy action selection, which consists in selecting a greedy action

with probability 1 − ε, and a random action with probability ε. This action selection

strategy is known as ε-greedy.
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There is one important issue to take into account w.r.t. the added random compo-

nent. Since the updating of the action-value function (2.19) should be consistent with

the followed policy, the random component, e.g. ε, should decrease to zero in the limit

to avoid large deviations from the improved policy, and, thus, to permit convergence

[81].

The complete algorithm for SARSA 1 is presented in algorithm 1.

2.2.4 Q-Learning

Perhaps the most known and used paradigm of RL is Q-Learning [92]. Q-Learning

estimates directly the solution to the Bellman Optimality Equations (2.12) using a

sample backup of the form,

Q(s, a)← Q(s, a) + η

(
r(s, a) + γ max

a′ Q(s′, a′)−Q(s, a)
)

, (2.20)

where the sample used for the updating, r(s, a)+ γ max
a′ Q(s′, a′), resembles the sample

used for the calculation of the expected optimal return in (2.11), except for the actual

optimal action-value Qπ∗
, which is replaced by its estimation Q(s′, a′).

Q-Learning directly estimates the optimal action-value function, disregarding the

policy followed, which makes it an off-policy RL approach. In SARSA, for instance, the

exploration component should be small and restricted as it affects the adaptation of

the Q-function towards the optimal. On the contrary, in Q-Learning, the exploration

strategy is not restricted, and does not affect the updating of the Q-function, permit-

ting faster value adaptations toward the optimal and a more flexible definition of the

exploration strategy. However, the off-policy nature of the learning allows for abrupt

changes in the policy followed and, hence, in the behaviour of the agent. This may be

highly undesirable in applications where abrupt changes in the behaviour may damage

the agent, as in many real robot applications, in which cases SARSA, or the actor-critic

architecture, would be preferred.
1The name SARSA was extracted from the notation of the elements in the sequence

(st, at, rt+1, st+1, at+1) which is used in the TD formula for the action-value estimation.
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Algorithm 2 Q-Learning
Initialize Q(s, a)
observe current state s
loop

select action a in s according to exploration-exploitation strategy
execute a, get r(s, a), and observe new state s′

estimate maximum Qmax = max
a′ Q(s′, a′)

generate q(s, a) = r(s, a) + γQmax
Q(s, a)⇐ Q(s, a) + η (q(s, a)−Q(s, a))
s⇐ s′

end loop

Note that, in Q-Learning, the policy improvement process is implicitly carried out in

the updating formula (2.20) as in the value iteration process 1 hence, at least theoreti-

cally, there is no need to explicitly carry out exploitation in the exploration-exploitation

strategy. Nevertheless, in some applications, exploitation may be mandatory to guide

the agent through the regions which are relevant for the learning to take place, as in

control applications where the goal states are only reachable after following the control

strategy learned so far.

The complete algorithm for Q-Learning is depicted in algorithm 2.

2.2.5 Policy Search

Policy search methods [26, 42, 57] directly search for policies that maximize the long-

term returns in the policy space, and may not even involve an estimation of the value

function 2 . They carry out an explicit representation of the policy using a set of

parameters that map into the policy space. This representation permits controlling

the way in which the policy is updated, preventing discontinuous changes in the policy

that may occur when it is obtained from the action-value function by just following the

greedy strategy.

Policy search methods are suitable for problems in which the changes in the be-

haviour of the agent needs to be smooth and carefully controlled, like in real-platform

applications with high risk of damage, which cannot be guaranteed by simply following
1In fact, Q-Learning constitutes a sample version of the value iteration process.
2These methods are also known as Policy-based methods, while those that use a value function

estimation to derive a policy, e.g. Q-Learning, are referenced as Value-based methods.
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the greedy policy. They are also preferred in those applications where the approxi-

mation of the policy may result simpler than the approximation of the value function,

provided some initial knowledge that permits assuming this. Policy search methods are

also attractive since they permit a continuous variation of the policy, a condition that

allows granting convergence when combined with some FA methods [62].

One known instantiation of policy search method is the actor-critic structure that

combines a policy approximation with a value function approximation, this last used to

search for the optimal parameters of the policy approximation. Since the actor-critic

structure performs both, a policy approximation and value function approximation, it

is considered as a bridge between Policy-based and Value-based methods.

2.2.5.1 Policy Gradient

Policy Gradient methods [85] belong to the Policy Search class of algorithms, where

the policy πθ is explicitly represented with a set of parameters θ. In this case, as well

as in many other RL methods, the method consists in the policy evaluation and policy

improvement steps. However, in the policy evaluation step, instead of approximating

the expected reward as a function of the state and action, like in most of the RL

algorithms, the method approximates the expected reward with respect to the policy

parameters θ,

J (θ) = E

[ ∞∑

t=1

γ(t−1)rt |πθ

]
. (2.21)

Having the expected reward as a function of the policy parameters usually allows for a

more simple and compact representation than the expected reward depending on the

state and action variables. In the policy improvement step, the parameters of the policy

are updated in the direction of the gradient ascent of J (θ),

Δθ = α∇θJ (θ) , (2.22)

where α is the learning rate.

The main concern of Policy Gradient methods is to estimate the gradient ∇θJ (θ).

In this regard, one of the most efficient approaches is the Natural gradient method [41]
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that follows the steepest direction towards a local maximum of J (θ). Therefore, the

Natural gradient moves the policy towards the best policy given the expected reward

learned so far, and not just towards a better policy, as obtained when the standard

gradient method is used.

The Natural policy gradient formulation was used to create the Natural Actor-Critic

method (NAC) [63, 64] that constitutes one of the most outstanding state of the art

policy-based RL approaches. In short, the NAC updates the policy parameters using

the Natural policy gradient, while the critic obtains the gradient and the parameters

associated to the expected value approximation using an adaptation of the LSTD(λ)

algorithm [25].

2.3 Generalization in RL

The basic formulation of RL assumes that the value function, or the action-value func-

tion, is explicitly represented by storing values for each state, or state-action, in a plain

tabular representation. This implies that all the possible actions in all the states must

be experienced many times for learning to take place. This is impractical in applica-

tions where the number of states and actions is too large, and impossible when it is

infinite. Unfortunately, many of the interesting applications of RL are of this kind,

demanding a different representation that permits to use each experience to update

the values of more than one state, or state-action, reducing the number of experiences

needed for learning. This is the problem of generalization in RL.

The generalization problem has been widely treated in the field of machine learning,

mainly for concept learning [51] and pattern classification [21, 31]. These techniques

use a finite set of input-output samples of an unknown function, commonly referenced

as the target function, to perform an approximation of this function using a method

of function approximation (FA) [27]. The approximation permits to infer values of the

target function in points of the domain with unknown output. In RL, the target function

is the value function, or the action-value function, and the input-output training points

are the samples used in the sample backups. For instance, in Q-Learning the samples
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are of the form,

< (s, a), r(s, a) + γ max
a′ Q(s′, a′) > (2.23)

where (s, a) is the input vector, and r(s, a) + γ max
a′ Q(s′, a′) is the output. Note that,

the values Q(s′, a′) are estimated from the FA made so far. We will use the notation

Q̂(s′, a′) ≈ Q(s′, a′) for the values inferred by the FA method in (s′, a′).

The idea of FA in RL, and in machine learning in general, is to represent the target

function using a set of parameters which permits an abstract representation of the

points in the domain, where a change in any of these parameters affects the inference

at many inputs. The parameters could be of different types depending on the function

representation used for the approximation like, for instance, the weights of a Neural

Network [16], or the decision values in a decision-tree representation [67]. Depending

on whether the number of parameters is fixed or variable during the learning process,

the methods are classified into parametric or non-parametric. Parametric methods [21]

use a fixed set of parameters which configures a fixed mapping from the parameter

space into the function space. Hence, a parametric FA method can represent a limited

number of functions which depends on the nature and number of the parameters used.

Contrarily, non-parametric methods are able to change the number of parameters in

the representation, thus being more flexible than parametric ones as they may permit

to approximate a function at any precision disregarding its shape and complexity.

2.3.1 Problems of Function Approximation in RL

Any method for FA in machine learning can be used in RL, but not all of them will

permit a good generalization. Due to the recursive nature of the expected returns

estimation, e.g. (2.13), (2.19), and (2.20), and to the variations of the exploration-

exploitation strategy caused, for instance, by the changes in the values associated to

the actions, the function to be approximated is largely non-stationary. On the other

hand, the samples used by the FA method are obtained along trajectories dictated by

the dynamics of the environment, and also by the exploration-exploitation strategy.

This makes the sampling to be highly biased and non-stationary, inducing regions that

are more frequently sampled to have better estimations than regions sparsely explored.
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This is an inconvenience since, for a good control strategy, the reward function should

be well represented even in those regions sparsely visited, or visited long time ago, in

which a wrong decision may imply a failure in the control task.

The biased sampling and the non-stationarity problems compromise the convergence

of the function approximation methods. Therefore, FA methods in RL should adopt

special strategies to mitigate the undesired effects of these problems. For instance,

works involving the class of methods called fitted value iteration [33, 37, 70] avoid the

problem of biased sampling by assuming that a fixed set of relevant 1 states, or state-

actions, is provided in advance. The approximation of the value function is performed

by fitting a function to those points in the set, focusing the error analysis only on those

states. Some other methods [48, 81, 91] deal with the biased sampling problem through

weighting the approximation error at each state, or state-action, by its probability of

occurrence according to a fixed followed policy. In [47], in turn, the convergence proof

of a linear function approximation in RL is carried out by assuming ergodicity, i.e., by

assuming that all the points in the domain are visited infinite times and, hence, ne-

glecting the biased sampling problem. Another way of dealing with the biased sampling

problem is the one proposed in [62] for policy-iteration algorithms. Conceptually, they

demonstrated that, if the agent behaviour changes smoothly with the changes in the

value function estimates, the visitation frequency of the states, or state-action pairs,

varies smoothly, and so it varies the new value function to be estimated. These smooth

variations in the policy and in the value function permits granting convergence.

In general, local function approximation methods, as state-aggregation techniques

(section 2.3.2) or radial basis functions (section 2.3.3), deal better with the problems

of non-stationarity and biased sampling. They limit the updating of the value function

to the surrounding of the sample, preventing large distortion of the approximation

in regions far from the experienced point. However, the locality of the updating also

implies a restriction in the generalization done, establishing a trade-off between locality

and generalization.

Another characteristic inherent to FA in RL is that both, the function approxima-

tion and the updating of the value function using backups, take place intertwined, and
1The set of points should be relevant in the sense that they have to permit to learn something

about the underlying MDP.
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their performances are mutually dependent. Most of the convergence analysis of these

two intertwined processes is done in terms of nonexpansive functions 1 [26, 37]. Broadly

speaking, the recursive application of a function approximator with a DP/RL operator

may converge to an estimation of the optimal value function, within a bounded error,

if the function approximator is nonexpansive. A nonexpansive function approxima-

tor is one that does not exaggerate the difference between the approximation carried

out in an input for two different target functions. This suggests that a nonexpansive

FA may prevent exaggerated changes in the approximations when the approximated

function is non-stationary. In particular, all the function approximators that are av-

eragers, i.e. that the inferred values are produced by a weighted average of values of

the target function, are nonexpansive. Examples of averagers are local weighted aver-

aging, k-nearest-neighbour, linear interpolation, and state-aggregation techniques. It

is important to remark that the averagers interpolate from the observed values, pro-

viding inferences in between the ranges of the observations, rather than extrapolate,

preventing large divergence in the approximation, and, hence, favouring convergence.

Another important issue to take into account when designing a FA method for

RL is that, during the process of FA and RL, the intermediate value functions at

the different stages usually have different structures, and could be even more complex

than the optimal one [24]. Since the complexity of the intermediate value functions,

and of the final optimal value function, is usually unknown in advance, they cannot be

expected to fit into a predefined parametric model. In general, non-parametric methods

deal better with these complexity variations than parametric ones.

In this thesis we will focus on applications with continuous domain. In the following

sections we present some of the most used strategies for FA in continuous domains,

describing remarkable state of the art approaches.

2.3.2 State-Aggregation Techniques

The most simple approach for function approximation in RL problems with continu-

ous domains is to represent the state space with a finite partition, and then treat the

problem as in the tabular case, considering each part as a more abstract state repre-

sentation. State-aggregation techniques use a partition of the state space where each
1A function that fulfills the inequality ‖f(a) − f(b)‖ ≤ ‖a − b‖ is said to be nonexpansive.
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part is an aggregation of states, hence the name, which assigns to all the states in the

part the same value. Every time a state in a part is experienced, the sample is used to

update all the states in the part. The key idea of these techniques is to use the coarsest

parts possible that permit to learn the target value function.

Some remarkable works of state-aggregation techniques are Variable Resolution Dy-

namic Programming (VRDP) [53, 55, 69], and U-Tree [46]. The original VRDP [53] is

a model-based RL approach which learns the transition probabilities between parts in

the partition and then applies conventional DP considering each part as a state. The

resolution is increased on demand of a better approximation of the value function by

splitting those parts that belong to trajectories with higher accumulated rewards. An

extension of VRDP techniques to model-free problems is proposed in [69], where the

resolution is increased in those regions of the state-space where the variation of the

estimated value function is high. In turn, U-Tree is also a model-based approach of RL

which uses a decision-tree representation of a state-action space with discrete variables.

Each branch in the tree is a compact representation of a sequence of states and actions

which is coded considering only the relevant values of the variables 1 at each observed

state, or executed action in the sequence. Each variable value conforms a node in the

tree. At each leaf, the tree stores experienced instances of the corresponding sequence,

the values of expected returns associated to each possible action at the final state, and

an estimation of the MDP model of state transitions and rewards. U-tree is a clear

example of a RL method that transforms a non-Markovian problem into Markovian

using memory. This is possible since the coded sequence can be considered as a new

state definition which is indeed Markovian.

One of the most important problems to face when using state-aggregation tech-

niques is the over refinement of the domain. The over refinement may be caused by

different reasons. For instance, the changes in the value functions estimation during

the learning process may produce a high granularity in some regions, though may result

useful for a proper approximation in one stage of the learning, may be useless for later

stages. Another source of over refinement is stochasticity. In stochastic problems the

splitting of a state may be carried out by a large approximation error generated by

an outlier generated randomly with low probability. The over refinement problem may
1The relevancy of a variable value is with respect to its correlation with a the obtained rewards.

28



2.3 Generalization in RL

produce that the amount of experiences required to reach an acceptable approximation,

even though reduced, remains intractable. One simple way of facing the proliferation

of parts is to generate parts in a general to specific fashion, depending not only on

the approximation error, but also on the number of experiences collected in the part

involved in the inference. If the number of experiences is low then more experiences

should be collected before generating new parts to allow for confident estimations of

the approximation error [69].

2.3.3 Linear Combination of Basis Functions

Another technique of FA in continuous domain RL is to use a linear model, where the

output is a linear combination of basis functions (BFs) [26], also referenced as features.

For instance, in terms of an action-value function approximation Q̂(s, a), the linear

model of BFs has the form,

Q̂(s, a) =
K∑

i=1

θi Fi(s, a, ξi), (2.24)

where Fi, i = 1, . . . ,K, are the BFs, and θi are the parameters that weight the influence

of each BF in the inference. The parameters ξi specify the shape and size of the ith

BF, and can be fixed in advance or adjusted during learning. The BFs map the original

state-action space, into a more abstract feature space that provides a compact repre-

sentation of the action-value function, now fully described in terms of the parameters

ξi and θi.

There are many different strategies of FA in RL using a linear combination of basis

functions [26]. The most simple strategy is to predefine the BFs, fixing in advance the

number of BFs and their parameters ξi, and then apply a linear method to find the

parameters θi. This strategy has been widely used in RL thanks to the simplicity and

efficiency of linear methods, and to their known convergence properties when using, for

instance, the method of gradient descent [47]. In fact, almost all useful convergence

results for FA in RL are for linear, or simpler, FA methods. An advantage of the

linear methods is that there is only one minimum for the approximation error, which

corresponds to the optimal values of the parameters. Any method that guarantees a

convergence to a minimum of the error, or a point close to that minimum, guarantees the
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convergence to the optimal set of parameters, or close to the optimal set. However, since

the BFs are fixed in linear methods, the repertory of functions that can be approximated

is also limited. Given the lack of knowledge about the shape of the unknown target

value function, this limitation may require a lot of effort in the definition of the BFs to

use. The alternative is to let the BFs be found automatically, while learning proceeds

[26].

The automatic learning of the BFs may be carried out by either predefining the

number and nature of the BFs, and letting the parameters ξi and θi be adjusted during

learning [48], or by varying the number and nature of the BFs and adjusting their

parameters ξi on demand for a better approximation in a non-parametric approach

[20, 38, 59, 93]. This last strategy is the most flexible, permitting to approximate

arbitrary functions. However, the convergence of these non-parametric approaches are

much more difficult to analyse than linear methods, and, in many cases, cannot be

guaranteed [26].

For the sake of illustration, we now summarize two BFs which are frequently used

in the literature: binary BFs, and radial BFs. The explanation of the following FA

methods will be carried out using the general notation x to reference the input vector,

which in RL may represent either a state, or a state-action.

Binary Basis Functions

One simple example of basis functions are the binary basis functions, where the output

of the BF is 1 when the analyized point, say x, is included in its domain, and 0

otherwise. Figure 2.1 illustrates two examples of binary BFs. Figure 2.1(a) shows an

example of a coarse coding representation [81], where the BF domains consist in circles

that together configure a covering of the input space. Figure 2.1(b), in turn, illustrates

a simple example of a multi-partition scheme representation [15, 23, 81, 93]. The figure

depicts an scheme with two partitions, where each part defines a domain of a BF. Note

that, state-aggregation techniques, described in section 2.3.2, can be considered as a

special case of a multi-partition scheme, where the number of partitions is one, and the

parameter θi for the ith BF is the value function estimation at the corresponding part.

When using binary BFs, the final approximation achieved is more dependent on the

number of elements involved in the inference rather than on their sizes: the higher the
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(a) Coarse Coding (b) Multi-partition Scheme

Figure 2.1: Examples of binary BFs in a 2D domain. Figure 2.1(a) presents a coarse
coding representation, while figure 2.1(b) illustrates a multi-partition scheme. In both
cases the BFs used for the inference, i.e. those containing the point x, are marked.

number of elements the better the approximation. This permits to use BFs that cover

wide regions of the input space, favouring generalization.

Radial Basis Functions

Radial basis functions (RBF), provide a continuous mapping from the original state

space, or state-action space, into a feature space with values usually in the range [0, 1].

RBF produces values depending on the radius (hence the name) of the input x with

respect to the center of the BF. One common example of RBF is the Gaussian shaped

BF,

Fi(x, ξi) = exp
(
−1

2
[x− ci]

T Σ−1
i [x− ci]

)
, (2.25)

where the parameters ξi = (ci,Σi) consist in the vector indicating the center of the BF,

ci, and the covariance matrix Σi that determines the shape and size of the BF. The

center ci plays the role of a prototypical point with an influence that is maximal at ci

and that decays smoothly according to Σi when moving away from the center. This

smooth variation in the inference of a RBF permits to carry out a smooth, differentiable,

approximation of the value function, providing a more suitable representation for FA

in continuous domains than binary BF.

31

coarse_coding_v1.eps
tile_coding_v1.eps


2.3 Generalization in RL

2.3.4 Neural Networks

Neural Networks (NN) [16] have been extensively used for FA in supervised learning

[51, 76] due to their capabilities of approximating non-linear functions, the well known

methods for its parameters estimation, and their capabilities of dealing with high di-

mensional domain applications. However, when applied for FA in RL, and disregarding

some successful applications [87], NNs may perform poorly [24, 89]. One problem of

NNs is that the global nature of its approximation may produce large distortions in

regions far from the experienced sample, which is worsen if the sampling is biased.

Another drawback is that NNs need many iterations to get a good approximation, in-

volving intensive computations, which may imply an impractical amount of time for

learning to take place when samples arrive one by one.

Despite the mentioned disadvantages, there are some methods that try to exploit

the benefits of NNs for FA in RL. For instance, the global nature of their approxima-

tion may result very useful for generalization, since the updating of large areas may

accelerate convergence significantly. One of the state of the art approaches of NNs in

RL is Neural Fitted Q Iteration (NFQ) [70]. NFQ basically combines a multi-layer per-

ceptron approximation with Q-Learning. This method faces the problem of distortions

produced by a global approximation by first storing a set of representative samples

uniformly distributed in the state-action space, and then fitting a function to them

in a batch mode. This strategy permits a balanced updating of the approximation at

different regions of the state-action space. Since the updating is carried out using a

set of representative samples, the NFQ method is cast into the fitted value iteration

class of algorithms [37]. Another important feature of NFQ is that the batch nature of

the learning permits to apply a backpropagation approach called Rprop [72] which has

better convergence properties than conventional backpropagation methods.

2.3.5 Gaussian Processes

Gaussian Processes (GP) [68] is a non-parametric approach for continuous FA that com-

bines the flexibility of non-parametric methods with Bayesian inference in a tractable

way. In general terms, a GP uses a prior probability distribution over functions, de-

fined by the user, and a set of observations D = {X,y} , considered as the evidence, to
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calculate a posterior probability distribution over functions from which the inference is

derived. The specification of a prior is important because it specifies the properties of

the functions to be considered. The data set is described with a matrix X = [x1, . . . ,xn]

that represents the observed inputs xi, i = 1, . . . , n, and a vector y = [y1, . . . , yn] that

represents the corresponding outputs of the target function.

The probabilistic treatment of the data provides a very flexible representational

tool, capable of approximating value functions in a wide spectrum of RL applications.

One point to remark is that, in addition to the function estimation in a given point, GP

also provides the uncertainty in this estimation at each evaluated point 1. Recently,

many works have exploited the advantages of GP for FA in RL [28, 33, 73, 74]. Some

of them use a model-free approach [28, 33], combining, for example, SARSA with GP

[33]. Some others, instead, use a model-based approach [28, 73], generating a separate

model for the environment dynamics, and for the value function.

In the sequel we present the outlines of a GP approximation. For a deep insight

about GP please refer to [68]. A GP is completely specified by a mean function m(x),

and a covariance function, k(x,x′), also called kernel,

m(x) = E [f(x)] , (2.26)

k(x,x′) = E
[
(f(x)−m(x))

(
f(x′)−m(x′)

)]
, (2.27)

where f(x) indicates not a single value of a function, but a sequence of points corre-

sponding to one possible function, being each element of the sequence a point of the

function. Because of this, f is not referred as a random variable, which would be in-

stantiated in single values, but as a real process, which is instantiated with sequences

of values belonging to a function. In this view, the real process f is generated from a

GP, GP, as,

f(x) ∼ GP(m(x), k(x,x′)). (2.28)
1Although this uncertainty is said to be another remarkable contribution of GP, as far as we know,

it has not been used for any purpose. Nevertheless, some works suggested that this information could
be used, for instance, to enrich the repertory of exploration-exploitation strategies in RL [33].
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The initialization of the mean and covariance functions defines the prior probability

distribution over functions. The mean function m(x) is set, in most of the cases, to

be 0 everywhere. Instead, the covariance function is usually defined as the squared

exponential (sometimes referenced also as radial basis function),

kθ(x,x′) = σ2 exp
(
−1

2
(
x− x′)T Λ−1

(
x− x′)

)
, (2.29)

where σ2 reflects the variability of the latent function f , and Λ = diag(l1, . . . , ld) is the

length-scale which determines the decay of the covariance with the distance between the

inputs x and x′. The parameters θ of the covariance function, which in the exemplified

kernel are θ =
(
σ2,Λ

)
, are denoted as hyper-parameters, and are determined so as

to maximize the log-likelihood of the data log p(y|X, θ) using, for instance, evidence

maximization [45]. GP does not require an explicit parametrization of the function.

Instead the set of hyper-parameters θ implicitly defines the function representation.

Since the hyper-parameters θ are tuned to fit a set of observations, when applied for

FA in RL, GP approximation are said to belong to the fitted value iteration class of

algorithms [37].

The setting to 0 of the values of the mean function implies that the FA capabilities

of the GP rely completely on the covariance function. In fact, learning in GP is the

problem of finding suitable properties of the covariance function [68] 1.

Once determined the hyper-parameters θ, it is possible to calculate the distribution

of values of functions at a given input x∗, and from this distribution derive the esti-

mation of the function at x∗, f∗, and the uncertainty in this estimation. To see how

this is carried out note that, a GP is defined as a collection of random variables for

which any finite number of them configured a joint Gaussian distribution [68]. Each

random variable in the joint distribution is either related to an input point x, either

observed or evaluated, or to an output value y, associated to each input. From the

joint Gaussian distribution, it is possible to derive the distribution of output values f∗

1Despite one of the benefits attributed to GP is that it is not attached to a certain class of functions
[68], this attachment exists implicitly in the definition of the prior, which indeed defines the nature and
richness of the functions that can be approximated.
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for a given input x∗ through the conditional probability,

(f∗|x∗,X,y) ∼ N(f̄∗, σ2
f∗), (2.30)

where the rest of the possible input-output, i.e. the ones not belonging to the observed

samples D = {X,y} or to the evaluated point x∗, are marginalized. The mean value

f̄∗ is used for the inference of the function at x∗, and the variance σ2
f∗ as a measure of

the uncertainty in the estimation.

Finally, to illustrate how the inference is calculated, let assume that some noisy

observations y = f(x)+ ε are provided, where ε representing an iid Gaussian noise with

variance σ2
n

1 . In this case, the mean and variance in (2.30) are calculated as,

f̄∗ = k(x∗,X)(K + σ2
nI)−1y, (2.31)

and,

σ2
f∗ = k(x,x∗)− k(x∗,X)(K + σ2

nI)−1k(X,x∗), (2.32)

respectively, where K is the kernel matrix with Kij = k(xi,xj).

2.4 Q-Learning with Function Approximation

Q-Learning (section 2.2.4) is usually preferred over other RL methods, like SARSA or

Actor-Critic, since it combines fast convergence properties with simplicity. This section

presents the general mechanisms involved in Q-Learning with FA. In particular we will

focus on the online version of FA in Q-Learning for continuous domain applications,

used along this thesis, where the updating of the FA is carried out stepwise, using only

the current experience. For clarity, we will refer to such approach as online memory-free

FA in Q-Learning.
1One point to remark concerning the random component in the observations is that the shape of

random component needs to be known in advance for the calculation of the conditional mean (2.31)
and variance (2.32). This restriction may imply serious difficulties to the GP methods when dealing
with observations with unknown stochastic components.
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2.4 Q-Learning with Function Approximation

Q-Learning with FA in continuous domains has been approached by many works [26,

37, 47, 70, 81, 86]. Most of the recently proposed approaches belong to the fitted value

iteration algorithms [37, 70]. Fitted value iteration algorithms, base their convergence

proofs on the concept of nonexpansive functions, and the existence of a set of points

that are representative enough so as to provide information about the underlying MDP

[26, 37]. Having a representative enough set of points may be rather complicated

in many interesting practical applications where the model of the environment is not

available and samples can only be observed while interacting with the environment.

To obtain a representative set of samples, the simplest approach is to get samples

from the whole state space by chaining a number of random actions [34]. However,

when the problem grows in complexity, the probability of executing a random sequence

that drives the system to the interesting regions of the workspace may be too low to

be achieved in practical time. In such cases it is necessary to exploit the knowledge

already obtained with previous interactions [34], which conducts to the problem of

biased sampling. In [70], the biased sampling problem is avoided by assuring that all

datapoints are used for update the same number of times. This is made possible by

remembering a dense enough set of transitions and performing full updates in batch

mode. In fact this is a common trait of all fitted value iteration algorithms. From a

computational point of view, this approach is very computationally intensive, since all

datapoints are used a large number of times until convergence is reached.

The alternative is to update the function representation by just using the currently

experienced transition, without memorizing samples, as carried out in the original

algorithm of Q-Learning (see algorithm 2). This relaxes the necessity of selecting and

storing a relevant set of samples, and the computational costs of updating all their

values at each iteration.

However, in the memory-free case, the biased sampling problem becomes an impor-

tant issue to deal with, and special attention must be paid to avoid large distortions

in the approximation in regions far from the experienced sample. Many approaches re-

strict the undesired effects of biased sampling by focusing the approximation resources

only at those points that are visited when following a fixed policy [47, 86]. But this re-

striction is impractical, since, on the one hand, the agent cannot exploit the knowledge

acquired so far to improve its behaviour, and, on the other hand, following a particular
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2.4 Q-Learning with Function Approximation

Algorithm 3 Q-Learning with an Online Memory-free Function Approximation

Initialize representation of the Q-Function, Q̂(s, a)
observe current state s
loop

select action a according to exploration-exploitation strategy
execute a, get r(s, a), and observe new state s′

estimate maximum Qmax = max
a′ Q̂(s′, a′)

generate q(s, a) = r(s, a) + γQmax
update Q̂(s, a) using sample < (s, a), q(s, a) >
s⇐ s′

end loop

policy may prevent the agent to visit those regions that are indeed relevant for the

learning of the optimal Q-function.

Under these circumstances, most applications of online memory-free Q-Learning

follow the action policy dictated by the exploration-exploitation strategy, at the expense

that convergence is no longer guaranteed [50, 90]. In this case convergence may occur

for each particular case depending, among other things, on how well the FA method

deals with the biased sampling problem. The method for online memory-free FA in

Q-Learning is a natural extension of the original Q-Learning algorithm, and is depicted

in algorithm 3.
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Chapter 3

Degenerate Function
Approximation

3.1 Introduction

One of the main difficulties encountered when selecting a function approximation (FA)

method for generalization in RL is that the target value function is unknown, and that

it varies in shape and complexity along the learning process [37]. The value function

may be rather smooth at some regions, while presenting large variations at others. In

most of the cases these variations are unpredictable, demanding the FA method to be

flexible enough to cope with the variable approximation requirements at all the regions

of the domain, and during the whole learning process.

The flexibility of the FA method should permit to cope with the approximation

requirements at most demanding regions, no matter how simple the target function may

be at others. This may produce that, if the target function presents many regions with

simple shapes, the FA method uses, for the approximation at those regions, a function

much more complex than actually needed. In this case, the amount of experiences

required to achieve a desired approximation would be much larger than the amount

of experiences needed to achieve the same approximation but with a simpler, though

appropriate, function. This is so since the larger the complexity of the function used,

the larger the number of experiences required to balance all its parameters. This fact

is illustrated in figure 3.1, where a straight line is approximated using two different
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3.1 Introduction

polynomials, one of degree 1, and another, more complex, of degree 2 1. To illustrate

the amount of experiences needed for convergence, we calculate, at each iteration of

the learning process, the mean absolute error (MAE) over 1000 test inputs randomly

selected, and plot, in figure 3.1(b), the evolution of the MAE for both cases. It is

easy to see that the approximation carried out with the simpler polynomial (red line),

convergences much faster than the one performed with the more complex polynomial

(blue line).

The previous result suggests that, if we define a partition of the domain where each

part delimits a region where the target function has a simple shape, and define each of

these parts as the domain of a simple, and independent, function approximator, then

the number of experiences required to achieve a certain approximation with the simple

FAs would be less than the number of experiences required by a more complex FA de-

fined in the entire domain. For instance, figure 3.2(a) presents a portion of a sinus-like

target function (black line), which is approximated, on the one hand, with a degree

4 polynomial (blue circles), as the least degree polynomial that permits an acceptable

approximation, and, on the other hand, with four FAs which use a polynomial of degree

1 (red dots), and which are defined in smaller regions. The convergence profiles of the

approximation carried out with the polynomial of degree 4 (blue), and the approxima-

tion carried out by the four simpler FAs (red), are shown in figure 3.2(b). As shown

in the figure, the simpler FAs achieve the same approximation error in a shorter time

than the complex one.

Note that, the improvement in the convergence when using linear FAs occurs despite

the fact that the four FAs involve a total of 8 parameters. This is so since, in the linear

FAs case, the parameters of each FA are adjusted independently, where each linear

FA needs to balance only two parameters, against the 5 parameters involved in the

quartic FA. In addition, it is important to consider that each linear FA has achieved

such approximation with one fourth of the total number of samples, while the quartic

polynomial was tuned using all of them, which also shows the efficiency of using many

simple FAs instead of a unique, complex one.
1The method used for the incremental updating of the parameters is the gradient descent method,

using samples drawn randomly from an uniform probability distribution.
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Figure 3.1: Comparison of the learning rate between two FA with different complexities.
Figure 3.1(a) shows the target function to be approximated and the approximation
reached, at sparse test samples, for the polynomial of degree one (red dots), and for
the polynomial of degree 2 (blue circles), showing that both reach the same accuracy.
Figure 3.1(b) shows the different convergence profiles of the approximation carried out
with the polynomial of degree one (red line), and with the polynomial of degree two
(blue line).

40

CH3_H1_1a.eps
CH3_H1_1b.eps


3.1 Introduction

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
y

x
(a) Target function approximations.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

 

 

4 FAs degree 1
1 FA degree 4

iterations

M
A

E

(b) Convergence profiles.

Figure 3.2: Comparison between a FA consisting in a polynomial of degree 4 versus
four linear FAs. Figure 3.2(a) shows the approximations achieved, where the black
line is the target function, the blue circles show the approximation of the degree 4
polynomial, and the red dots correspond to the approximations of the simpler, degree
1, polynomials. Figure 3.2(b) contrasts the convergence profile of the complex FA, in
blue, with the approximation performed by the simpler FAs, in red.
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3.1 Introduction

3.1.1 A Competitive Strategy for Function Approximation: General
Concept

Even though many simpler FAs may perform better than a unique complex one, there

is still the need of finding those regions in which this simpler FAs will perform well.

For instance, in figure 3.2(a), the shape of the target function in the central regions in

which the linear FAs were defined, can be reasonably approximated with a straight line.

However, it is evident that the approximation with a straight line is fairly poor in the

lateral regions of the domain where the target function presents a more complex shape.

It is clear that a better choice of these regions would result in a better approximation.

Then, in order to actually exploit the advantages of using simple FAs, we would need

to define a searching strategy that permits to find those regions in which the target

function can be well approximated with the function of choice.

One searching strategy could be the one used by the variable resolution (VR) ap-

proaches (section 2.3.2) to find the parts in which the target function is well approxi-

mated with a constant value. Basically, in these approaches, the searching is performed

sequentially by splitting existing parts. We may, thus, use this strategy to find the re-

gions in which the target function is well approximated by the simple function selected,

e.g. a constant value.

However, this searching strategy has some drawbacks. For instance, in multi-

dimensional spaces the newly generated parts inherit all except one of the borders

of their parent. This may imply that, depending on how the splitting of parts is carried

out from the beginning of the learning process, some parts become more difficult to be

generated than others. In this case, the approach may need to perform many splitting

steps until a fairly enough amount of different parts are tried, so as to find those where

the target function may be sufficiently approximated. Another limitation is that, at

each point, only one part is tried at a time. If a part does not produce good results,

then a new process of splitting is carried out, and the system must wait until a sufficient

amount of experiences are collected in the newly generated parts to be able to evaluate

further specializations.

An alternative would be to replace the partition of the domain by a covering, in

which different domains for the FAs may overlap. In this way, the shapes of the new

parts may be freely defined, and many different domains around each point may be tried
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3.1 Introduction

simultaneously, increasing the opportunities of finding a region in which the function

can be approximated by a constant value. Thus, the inference at a point could be

provided in a competitive way by the FA that better approximates the target function.

3.1.1.1 An Illustrative Example

To illustrate the idea of using a competitive strategy we perform a simple experiment in

which a multi-step target function is approximated using two strategies: one where the

domains of the FAs are searched as in the VR techniques, i.e. using a partition of the

target function domain, and the other using the competitive strategy described in the

previous section. The function selected for the FAs is just the constant-valued function,

what indeed makes the strategy using a partition the typical VR technique. In both

cases, the value used for a given FA is calculated as the mean value of the observations

collected so far in the FA domain. For the sake of this illustration, we assume that

the target function is known. This allows us to select, in the competitive strategy, the

FA that better approximates the target function at a point as the one whose constant

approximation is closer to the value of the target function at that point.

The approximation, in both cases, is performed incrementally, generating new FAs

when a large approximation error is detected. For the case of the VR technique, the part

containing the evaluated point is split in two halves, initializing the approximation of

the half containing the point with the value of the function observed at that point, while

the other half keeps the approximation of the old part. For the case of the competitive

strategy, new FAs are generated in parallel, with domains defined by segments with end

points chosen randomly in the total range of the input space around the experienced

input. The initialization of the approximation of the new parallel FAs also consists in

the observed value of the function.

To show how the number of parallel FAs improves the chances of a good approxima-

tion, we implement, for the case of the competitive strategy, two different experiments:

one generating 2 FAs, and the other generating 10 FAs once a large approximation

error is detected. Figure 3.3 presents the result of all the experiments. Figure 3.3(a)

shows, in black, the multi-step target function, and the approximations, at some test

points, carried out by the VR strategy (blue circles), and by the competitive strategy

with 2 FAs generation (red dots). Figure 3.3(b) presents, in turn, the convergence
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3.1 Introduction

profiles of the VR technique (blue), and the two cases of competitive strategy, with a

generation of 2 FAs (red), and with a generation of 10 FAs (green). It can be seen that

the competitive strategies converge much faster than the VR technique, achieving a

smaller approximation error in a shorter time. In particular, the competitive strategy

with a generation of 10 parallel FAs converge faster than the competitive strategy with

a generation of 2 FAs, which suggests that the larger the number of parallel FAs, the

better the generalization.

To illustrate the generalization capabilities of both approaches, the VR and the

competitive strategy, we present, in figure 3.4, the number of parts used by both ap-

proaches for the approximation of the target function 1. A vertical line indicates the

transition between parts. After 2000 iterations, the VR strategy generated 173 parts for

the approximation of the multi-step target function (figure 3.4(a)), while the compet-

itive strategy, with 2 FAs generation, configures a partition with only 33 parts (figure

3.4(b)). Even more, although the number of parts configured by the competitive strat-

egy is 33, the actual number of FAs used to approximate the target function is 26.

This is possible since the parallel structure permits that the same FA is used for the

inference at disjoint regions of the domain.

In addition to the potential benefits so far explained, there are some other interesting

features of the competitive strategy. Since at each point there will usually be more

than one FA, each providing its own inference of the value function, the competitive

strategy is not limited by the accuracy of a single approximator, as happens in the

VR approaches and in most of the approaches for FA in RL. If one approximator

gets its approximation degraded, it will be supported by other approximators that

may perform better, keeping a good overall performance of the system, and producing

more stable convergence profiles. This makes the competitive approach attractive in

RL since it permits to deal well with non-stationary target functions: when a drastic

change of the target function occurs at some point of the domain, it is not necessary

that the formerly best approximator at this point completely reshape its approximation

before the output becomes accurate; instead, a different approximator that managed

to be more accurate at that point will provide the output as soon as it proves to
1Note that, despite the domains of the FAs used in the competitive strategy do not configure a

partition of the target function domain, the points of the domain of each FA for which the FA is the
best for the inference, indeed configure a partition.
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Figure 3.3: Comparison between a VR strategy and the competitive strategy in the ap-
proximation of a multi-step function. Figure 3.3(a) shows the target function depicted
in black, while the approximations carried out by the VR strategy and the competitive
strategy, are depicted in red and blue, respectively. In figure 3.3(b), the convergence
profile of the VR approach is depicted in blue, while the ones corresponding to the
competitive strategy are painted in red, for the case of 2 FAs generation, and in green
for the case of 10 FAs generation.
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Figure 3.4: Detail of the number of parts used by the VR strategy, and the competitive
strategy, for the approximation of a multi-step function. The vertical lines delimit each
part.
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3.2 Degenerate Function Representation

be more accurate there. An alternative approach would be to use for the inference a

weighted average of the estimations of the approximators covering the point, rather than

a winner-takes-all strategy. However, to provide an accurate output, a weighted average

strategy would need to wait until all the approximators with a non-negligible weight

get their approximations reshaped, while with a winner-takes-all strategy it would be

enough that one approximator performs well there. Another point to remark is that

the competitive strategy deals well with the problem of over-refinement, explained in

section 2.3.2, as the generation of FAs does not slow the convergence, but could even

improve it since more FAs represents more chances of having a good one among them,

though at the expense of a larger computational cost.

In this chapter we propose a competitive strategy for function approximation in

continuous domains. Since the approach developed generates parallel FAs on demand

for a better approximation, it is non-parametric. Next section presents the formaliza-

tion of a function representation using a competitive strategy, that will be used, in

section 3.3, to formalize the idea of using competing function approximators for the

approximation of an arbitrary target function. During that section, the formalizations

presented are illustrated with some examples. The chapter ends with a brief conclusion.

3.2 Degenerate Function Representation

Before entering into the details about the mechanisms for function approximation using

a competitive strategy, we provide a formal definition of the function that will be used

to approximate a given target function.

We define a competitor function, Φi(x, ξi), as a parametrized function with param-

eters ξi, defined in a D-dimensional continuous domain Xi ⊂ 
D. Associated to each

competitor Φi, there is a relevance function, Γi(x, νi), which is a parametrized function

with parameters νi, also defined in the domain Xi.

We define a degenerate function 1 , F(x,Φ,Γ), as a function configured by a set of

competitors Φ =
{
Φ1,Φ2, . . . ,Φ|Φ|

}
, and the corresponding set of relevance functions

1 The denomination degenerate is borrowed from the degeneracy concept of the theory of Neuronal
Group selection [32], in which the idea of using a competitive structure is based.
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Γ =
{
Γ1,Γ2, . . . ,Γ|Φ|

}
. The function is defined in a domain X =

|Φ|⋃
i=1

Xi, where the

competitor domains form a covering of X.

The output of the function y = F(x,Φ,Γ), at a given input x ∈ X is determined as

follows: first, a winner competitor, Φw, is selected such that

w = argmax
i∈Ix

Γi(x, νi), (3.1)

where Ix = {i|x ∈ Xi} references the set of indices of the active competitors for x,

Φx = {Φi|x ∈ Xi} . (3.2)

Then, the value y is obtained as

y = F(x,Φ,Γ)

= Φw(x, ξw). (3.3)

3.3 Degenerate Function Approximation

We assume that there is an arbitrary unknown target function f(x) that should be

approximated, from which we can only observe its values at particular points obtained

sequentially, (xt, yt), yt = f(xt), where t accounts for the t-th time step. Our aim is to

devise a non-parametric, online memory-free function approximation using a degenerate

function representation. To this end we need to define the functions to be used for the

competitors Φ, their respective relevance functions Γ, that should indicate how good the

approximation of the respective competitors are at an evaluation point, and the method

that will be used to find the parameters ξi, and νi, so as to get a good approximation

of the target function,

f(x) ≈ F(x,Φ,Γ). (3.4)

In addition, since the approach will be non-parametric, we need to define the mecha-

nisms for the generation of competitors on demand for a better approximation 1. We
1It is also possible to make the approach non-parametric by changing not only the number of
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call a method for function approximation that uses a degenerate function a degenerate

function approximation (DFA).

In the definition of a DFA system, we could use any type of function for the competi-

tor Φ(x, ξ), e.g. constant. The type of function selected will influence the generalization

performed by the DFA, depending on the size of the regions of the target function that

can be well approximated with Φ(x, ξ). However, if the relevance function selected does

not permit a good distinction between a good or a bad approximation, the performance

of the DFA system will be poor, disregarding the competitor selected. Hence, a correct

definition of the relevance function is crucial for the good performance of the DFA

system. Next section is focused on this aspect.

3.3.1 Relevance Function

To make the exposition clear, we will first assume that the target function is determinis-

tic, and that the competitor and the relevance functions are constant-valued functions.

We consider as the constant value for the competitor function the sample mean [22],

Φi(x, ξi) = Ȳi =
1
ni

ni∑

j=1

yj , (3.5)

where ni is the total number of samples observed so far in Xi. To define the relevance

function, note that the variance of f in Xi, σ2
i = EXi

[
(f(x)− EXi [f(x)])2

]
, is a good

indicator of how good EXi [f(x)] (≈ Ȳi) approximates f in x. Hence, the inverse of the

variance σ2
i would be a good value for the relevance. However, as we only have a limited

amount of samples of f , the variance can not be determined precisely and should be

estimated. We estimate the variance using the (unbiased) sample variance S2
i [22],

S2
i =

1
ni − 1

ni∑

j=1

(
yj − Ȳi

)2
. (3.6)

Since the variance is estimated using a limited amount of information, its estimation

carries uncertainties which vary with the number of samples ni. To take into account

competitors but also the number of parameters ξ and ν. However, we will keep the number of these
parameters fixed, varying only the number of competitors, to keep the approximation at each competitor
as simple as possible.
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these uncertainties we use a known result from Statistic [22],

1
σ2

i

ni∑

j=1

(
yj − Ȳi

)2 ∼ χ2 (ni − 1) . (3.7)

Equation (3.7) states that the expression on the left has a χ2 distribution with ni − 1

degrees of freedom. Using (3.6) and (3.7) we obtain,

(ni − 1)S2
i

σ2
i

∼ χ2 (ni − 1) . (3.8)

This allows us to build a confidence interval for the true variance σ2
i that only depends

on the sample variance and the number of samples experienced in the competitor do-

main 1. For this, we use the definition of the α-quantile χ2
α(h),

P (Y > χ2
α(h)) = α. (3.9)

Equation (3.9) means that, if a random variable Y has a χ2 distribution with h degrees

of freedom, the probability that Y takes values greater than χ2
α(h) is α. Fixing α to

a convenient value, for instance α = 0.95 to make things concrete, we can obtain an

interval for Y that is 95 % certain to include its true value. Taking Y = (ni−1)S2
i

σ2
i

we

have,

P

(
(ni − 1) S2

i

σ2
i

> χ2
α (ni − 1)

)
= P

(
σ2

i <
(ni − 1)S2

i

χ2
α (ni − 1)

)
= α. (3.10)

The upper bound,

(ni − 1)S2
i

χ2
α (ni − 1)

, (3.11)

represents the highest possible value (with α confidence) of the actual unknown vari-

ance given the current uncertainties in the estimation. Less confident estimations will
1In principle, the method to calculate the confidence interval for the variance through the χ2

distribution assumes normally distributed samples. However, it is known [22] that this method is also
valid when samples are obtained from any other distribution, different from the normal. In this case,
the values provided would indicate approximated confidences, rather than accurate ones, that would
become more precise as more samples are considered.
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have higher upper bounds. The value (3.11) provides a measure of the quality in the

approximation that balances the estimation accuracy and the confidence in that esti-

mation. Hence, we adopt the inverse of the upper bound of the confidence interval for

the variance as the relevance of a competitor Φi,

Γi(x, νi) =
χ2

α (ni − 1)
(ni − 1)S2

i

. (3.12)

This definition of the relevance prevents that weak estimations with low variances are

favoured against those with slightly higher variances but with much more confident

estimations.

In the above development we assumed a deterministic target function. We now

abandon this assumption and let the target function be stochastic. In this case, the

sample variance is not uniquely determined by the approximation quality of a competi-

tor, but also reflects the intrinsic variability of the samples due to the non-determinism.

However, since these additional source of variability are essentially associated to a given

point x, it will affect in a similar measure all the competitors covering it, and will not

influence in the competition.

3.3.1.1 An Illustrative Example

In order to illustrate the implementation of the DFA approach using constant competi-

tor and relevance functions, we consider the same simple problem of approximating a

multi-step function presented in section 3.1.1.1, but this time without assuming that

we know the target function. Instead, we only get information of the target function at

some points sampled sequentially. In the example, we consider constant-valued func-

tions for the competitor and its relevance, calculated using formulas (3.5), and (3.6),

respectively.

Online, Memory-free, Updating

The averages involved in (3.5) and (3.6) have the form,

f̄n =

n∑
j=1

fj

n
(3.13)
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where fj is the j-th observation of the function in the given domain. It is easy to see

that the incremental, memory-free, calculation of this generic average is,

f̄n =
(

1− 1
n

)
f̄n−1 +

1
n

fn. (3.14)

In the previous incremental formula (3.14), all the samples are weighted with the

same factor 1/n, no matter how long ago they were observed. This would be appropriate

in cases where all the experiences are equally important for the average. However,

when the estimations depend on quantities that are expected to improve along time,

old observations are less accurate and should progressively be replaced by newer, more

accurate ones. For instance, the sample variance (3.6) is calculated using the squared

difference between the sample mean and the target function. Since the sample mean

is improving along time, later observations of this error are more accurate than old

ones, and a forgetting must be considered. This forgetting is also necessary in cases

where the target function is non-stationary, like in RL applications. In this case, the

variations of the target function also require to discard old, possibly outdated, values

by including a forgetting effect in the updating.

To implement such forgetting, we make use of the incremental updating formula

for stochastic approximations [43], which has the same form of the incremental formula

(3.14), but considering, instead of factor 1/n, a generic definition of a learning coefficient

η(n) that can be regulated to produce the desired forgetting effect. Using the stochastic

approximation approach, equation (3.14) is replaced by,

f̄n = (1− η(n))f̄n−1 + η(n)fn. (3.15)

To produce a forgetting, the factor η(n) should be defined to avoid a fast dropping

to zero of the learning coefficient, what may produce the average to get stuck before

reaching the correct solution. This may be accomplished by establishing the condition

η(n) > 1/n which makes new incomes more relevant than old ones, with a forgetting

effect determined by the particular setting of η. However, the definition of the learning

coefficient η(n) is not unrestricted if we want to guarantee convergence to a solution.

To this end, the function η(n) should be defined in a way that it fulfils the stochastic
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approximation requirements (2.15) and (2.16). A known set of functions which fulfil

the stochastic approximation conditions are those of the form,

η(n) =
1

an + b
, (3.16)

where 0 < a < 1, and b > 0. This formula, even though simple, permits a wide variety

of behaviours for the learning coefficients. For instance, making a = 1 and b = 0, we get

a learning coefficient η(n) = 1/n, which is suitable for cases where no forgetting should

occur. For values a < 1, the forgetting increases as the parameter a decreases. In the

extreme case of a = 0 and b = 1, the forgetting of past values would be complete, and

the estimations would consist only in the current observations. Hence, the parameter

b limits the influence of the parameter a in the learning coefficient behaviour, and

regulates the forgetting effect mainly for lower values of n.

Competitor Generation

The generation of new competitors for this simple example is carried out as in section

3.1.1.1, by generating a predefined number of competitors with random domains each

time a large approximation error is encountered. However, in this case, instead of

allowing the generation of competitors with domains as large as the domain of the

target function, we restrict the size of the domain of each new competitor to the size

of the domain of the winner competitor. The segment corresponding to the domain

of a new competitor is defined using a left endpoint randomly generated in [x−Δ, x],

and a right endpoint randomly generated in [x, x + Δ], where x is the evaluated point,

and Δ is half of the length of the segment corresponding to the domain of the winner

competitor.

Results

As the results of the example we use the average of 10 runs of the mean absolute error

(MAE) obtained at each iteration 1 . The results, compiled in figure 3.5, show how

the convergence rate of the DFA method improves with the number of competitors

generated every time a large approximation error is detected.
1In the example presented in section 3.1.1.1 we showed the results of a single run just to illustrate

the advantages of using a competitive strategy.
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(a) VRFA versus DFA with 2 competitors generation.
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(b) VRFA versus DFA with 10 competitors generation.

Figure 3.5: Comparison between the performance of the VR strategy and the perfor-
mance of the DFA with constant-valued competitor and relevance.
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3.3 Degenerate Function Approximation

For the case of generating 2 competitors (figure 3.5(a)), the performance of the

DFA is comparable with that of the variable resolution approach. The VR approach

generated, in average, 118 parts, while the DFA approach configured a smaller average

of 54 parts. In this case, the random generation strategy used by the DFA method

is not able to generate enough competitors whose approximation capabilities permit

to overcome the approximation of the VR approach. The performance of the DFA

approach is improved significantly for the case of generating 10 competitors (figure

3.5(b)), surpassing the performance of the VR approach. The average number of parts

configured by the DFA method with 10 competitors generation is 64. These results show

that the system improves its performance with the number of competitors generated,

supporting our hypothesis that trying more FAs in parallel increases the opportunities

of generalization.

Note that the performance of the DFA method in the case of an unknown target

function is worst than the performance shown in section 3.1.1.1. This is expected since,

in that case, we use the unrealistic assumption that the target function is known, and,

hence, which approximation has the highest relevance at each point. In this case, the

relevance has to be estimated with incoming samples.

3.3.1.2 Point-Dependent Relevance

In the developments presented before we considered constant-valued estimations for the

competitor function and the relevance function. However, the DFA system permits to

regulate the precision of the relevance of a competitor by providing more parameters

νi to the relevance function Γi(x, νi). In general, the sample variance S2
i (3.6), can be

approximated with a multi-parametric estimation S2
i (x, τi), with parameters τi. Using

this estimation, we can estimate the sample variance for samples experienced in a region

X̃i ⊂ Xi as,

S̃2
i =

∫
X̃i

S2
i (x, τi) pi(x, ςi)dx
∫
X̃i

pi(x, ςi)dx
, (3.17)

where pi(x, ςi) is a parametric estimation of the probability density function in Xi. In
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a similar way, we can estimate the number of samples in X̃i as,

ñi = ni

∫

X̃i

pi(x, ςi)dx. (3.18)

Now, replacing the sample variance and number of samples in Xi in the upper

bound formula (3.11), with their counterparts in X̃i we get,

(ñi − 1) S̃2
i

χ2
α (ñi − 1)

, (3.19)

which leads to express the relevance function for a point x ∈ X̃i as,

Γi(x, νi) =
χ2

α (ñi − 1)
(ñi − 1) S̃2

i

. (3.20)

With this relevance formula we can regulate the precision of the relevance of a competi-

tor at a point x by adjusting the size of the region X̃i to an appropriate value depending

on the nature of the generalization performed and the regularity of the variance func-

tion. In order to simplify the calculations of the integrals in (3.17) and (3.18), we

assume that the region X̃i is small enough for the probability density function pi(x, ςi)

and the variance function S2
i (x, τi) to be nearly constant, which permits to estimate

the relevance (3.20) as,

Γi(x, νi) ≈ χ2
α (hi)

hi S2
i (x, τi)

, (3.21)

where hi = Ṽi ni pi(x, ςi) − 1. Ṽi is the volume of X̃i that, in practice, is defined

empirically for each particular problem.

Influence of Point-dependent Relevance in Competitor Selection

A precise relevance permits a better use of the competitor approximation capabilities

since it may permit to select a competitor whose approximation is closer to the target

function in a point, no matter how large the approximation error may be at other

regions of its domain. To illustrate this idea, we perform another simple experiment of

approximating a plain step function (figure 3.6). In the experiments we compare the
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approximation carried out by two DFA approaches, one with relevance functions using

a constant estimation of the variance (3.6), and the other using a linear estimation of

the variance,

S2
i (x, τi) = Aix + Bi, (3.22)

where τi = {Ai, Bi}. In both cases, we use the sample mean (3.5) as the competitor

functions, and assume an uniform probability density function with value pi(x, ςi) =

1/Vi, where Vi is the volume of the competitor domain. For the experiment we use a

DFA with three competitors: two non-overlapped competitors, each one with a domain

consisting in a half of the target function domain, and one competitor that covers

the entire target function domain. For illustrative purposes, we keep the number of

competitors fixed.

Figure 3.6(a) shows the approximation of the step function achieved by the DFA

approach for the case of a constant relevance function (MAE=0.22). Figure 3.6(b)

presents, in turn, the results corresponding to the case of a relevance function with a

linear estimation of the variance (MAE=0.17). The improvement in the approximation

is achieved thanks to the more precise relevance calculation, which permits to perform

a more efficient selection of the best competitor at a point 1. The relevance of each

competitor for the case of a linear variance estimation is depicted in figure 3.7(b), while

the corresponding variance estimations are presented in figure 3.7(a). Note that, in the

case of a linear estimation of the variance, the largest competitor, whose relevance is

depicted in red, becomes more relevant than the left half competitor immediately to the

right of the step. This is so since the approximation of the largest competitor is closer to

the target function in this region than the more specific left half competitor. Contrarily,

in the constant relevance case, the left half competitor wins over the largest competitor

in the region immediately to the right of the step, when actually the largest competitor

performs a better approximation there. This is so since the global constant relevance

does not permit to discriminate between regions well or bad approximated within the
1It is important to remark that, despite a more precise relevance permits to make a better selection

of the competitors, the parameters of the relevance function should be estimated from incoming samples
and, as we have already shown, the higher the number of parameters to be balanced, the higher the
number of experiences required to balance them. This establishes a trade-off between the accuracy in
the competitor selection and the convergence speed.
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(a) Approximation using a constant estimation of the variance.
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(b) Approximation using a linear estimation of the variance.

Figure 3.6: Comparison between a DFA method using a constant estimation of the
variance, and using a linear estimation of the variance, in the approximation of a step
function. The target function is depicted in a black line, while the approximation of
the DFA method is shown in red dots.
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(a) Variance estimations in the competitors domains.
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(b) Relevance of the competitors.

Figure 3.7: Relevance estimation, and their corresponding variance estimations, of the
competitors. The results for the larger competitor are presented in red. The results for
the smaller competitors covering the left and right half of the target function domain
are presented in blue. Note that the variance of the right half competitor tends to zero
as learning proceed, which makes the relevance to tend to infinite. For clarity in the
figure we limit the minimum value of the variance to a value close to zero.
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3.3 Degenerate Function Approximation

competitor domain. This implies that, in order to achieve any desired precision in the

approximation when using constant relevance, we would need to generate more specific

competitors until we find those which perform a good enough approximation in all its

domain, so as to surpass the average approximation quality of other competitors. For

instance, in the example, the DFA with constant relevance may achieve a more precise

approximation by generating two more competitors resulting from the splitting of the

competitor on the left half.

3.3.1.3 Relevance Estimation under Biased Sampling

In the case of a biased sampling, the relevance estimation when using a global constant

relevance becomes much more inaccurate, and the system may not be able to achieve

any desired precision by just generating competitors. This is so because, under a biased

sampling, the relevance of a competitor reflects mainly the quality in the approximation

at frequently sampled regions, providing a weak indication of this quality at weakly

sampled ones. Therefore, the necessity of a more informative relevance estimation is

increased when biased sampling occurs, in order to permit an approximation to any

desired precision.

To illustrate the effect of biased sampling, we use the same example of the step

target function, but now, instead of providing observations from a uniform sampling,

we generate such observations using a biased sampling. To implement this, we obtain

samples from the right half with a probability of 0.75, and from the left half with

a probability of 0.25. Figure 3.8(a) presents the approximation achieved by the DFA

approach with constant relevance, while figure 3.8(b) shows the approximation achieved

by the DFA approach using a linear variance estimation for the relevance.

Note that, in the case of a constant relevance, the largest competitor has an es-

timation closer to 1 than in the uniform sampling case (figure 3.6(a)), since it is fed

mostly from samples on the right half, where the target function has a value of 1. Its

relevance value is also increased since the average approximation quality in the sampled

points is better. When an inference has to be done on the left half, the relevance of

the largest competitor surpasses the relevance of the left half competitor, producing an

incorrect competitor selection (overall MAE=0.3). Conversely, if we now use a linear

estimation of the variance, the competitor selection becomes much better, permitting,
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in this case, to select the best competitor for the inference at practically the entire do-

main (MAE=0.15) (figure 3.6(a)). The linear approximation of the variances, and their

corresponding relevance functions, now for the case of a biased sampling, are shown in

figure 3.9(a), and 3.9(b), respectively.

3.3.1.4 An Illustrative Example: Point-dependent Relevance Case

In order to evaluate more thoroughly the gain in the approximation when considering

a more accurate relevance, we carried out the same experiments presented in section

3.3.1.1, but this time considering a linear estimation of the variance in the relevance

functions. Figure 3.10 presents the results.

The experiment with a linear estimation of the variance and two competitors gen-

eration (green line) converges faster, and to a more precise approximation, than the

constant variance estimation case (red line). This is not the case for the experiments

with 10 competitors generation, where both strategies, using a constant variance es-

timation and using a linear variance estimation, have similar performances. This is

because the amount of competitors generated in this last case is very high, and so

there are many chances of generating competitors that cover a region where the target

function is constant. Under these circumstances there is no much gain of using a linear

variance estimation since a constant variance provides already a very precise indication

of the quality in the approximation at all the points of the competitor domain. This is

also the case in the previous example of the step target function approximation, where

the competitor defined on the right half of the domain approximates exactly the target

function (figures 3.6 and 3.8).

Indeed, in the example of a multi-step target function, using a linear estimation of

the variance only makes sense when there are not enough competitors whose domains

cover a region where the target function is constant. In this case, a linear variance

estimation permits to better distinguish between good and bad approximated regions

of the competitor domain than a plain constant variance estimation, and, hence, to

better select the best competitor in a point. This is also the case of the previous

example for the competitors covering the left half of the domain (figures 3.6 and 3.8),

and the reason of the better performance of the DFA with a linear variance estimation

in the experiments with 2 competitors generation (figure 3.10(a)).
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(a) Approximation under biased sampling using a constant rel-
evance .
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(b) Approximation under biased sampling using a linear esti-
mation of the variance for the relevance.

Figure 3.8: Comparison between a DFA method using a constant estimation of the
variance, and using a linear estimation of the variance, in the approximation of a step
function under biased sampling. The target function is depicted in a black line, while
the approximation of the DFA method is shown in red dots.
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(a) Variance estimations in the competitors domains.
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(b) Relevance of the competitors.

Figure 3.9: Variance estimation, and their corresponding relevance values, of the three
competitors used for the example, now fed using a biased sampling. The results for
the larger competitor covering the entire domain of the target function are presented
in red. In blue, the results for the smaller competitors covering the left and right half
of the domain, respectively. For consistency, we make the variance to be zero when the
linear estimation gives a value below zero. In the figure, this limit is set to a value close
to zero to permit a clear visualisation of the relevance functions.
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(a) VRFA versus DFA with 2 competitors generation.
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(b) VRFA versus DFA with 10 competitors generation.

Figure 3.10: Comparison among the performances of the VR strategy, the DFA ap-
proach with constant-valued relevance, and of the DFA approach with point-dependent
relevance.
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3.4 Conclusions

3.3.2 Competitor Management

In order to approximate an arbitrary function to any desired precision, the number

of competitors should be varied on demand for a better approximation. The idea

is to find, through generating competitors, the regions of the domain in which the

target function can be well approximated with the function used by each competitor.

This implies that the generalization capabilities of the DFA will depend on whether the

approximated function presents wide regions of this kind, and the ability of the method

to create competitors which capture these regularities. Any generation mechanism can

be employed for this purpose, as far as the new competitors enrich the approximation

capabilities of the system.

The strategy adopted for the generation of competitors may produce competitors

that, generated once to solve the approximation needs, become less useful for the ap-

proximation as a consequence, for instance, of the non-stationarity of the target func-

tion. Despite a large amount of competitors improves the chances of generalization,

an elimination strategy of less useful competitors can be also implemented to avoid an

excessive computational cost in storing and processing all the competitors.

3.3.3 Algorithm for the DFA

The complete algorithm for the degenerate function approximation is presented in algo-

rithm 4. Note that, in this algorithm, the updating of the parameters ξi and νi may be

done using any strategy, either memory-based or memory-free. However, in our case,

we use an online, memory-free, strategy in every application of the DFA.

3.4 Conclusions

In this chapter we have introduced the advantages of using a competitive strategy

for function approximation, and presented the mechanisms of a competitive strategy

called degenerate function approximation (DFA). This strategy uses a set of function

approximators, named as competitors, that compete to provide the inference in a point.

The competitor selected for the inference is obtained using a relevance function that
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Algorithm 4 Degenerate Function Approximation
initialize the degenerate function, F(x), using a set of competitors Φ whose domains
determine a covering of the target function domain
loop

get observation < x, y >
get the active competitors Φx, and the corresponding relevance functions Γx

select the winner competitor in x, Φw(x)
calculate the approximation error e(x) = (y − Φw(x))2

update parameters ξi of competitors Φi ∈ Φx using sample < x, y >
update parameters νi of relevance functions Γi ∈ Γx using sample < x, e(x) >
if there is a need of competitor generation then

generate new competitors and their corresponding relevance functions
end if
if the criterion for elimination is fulfilled then

eliminate less useful competitors and their respective relevance functions
end if

end loop

quantifies the quality in the approximation of each competitor. So far, we have pre-

sented the formalization of this competitive strategy, illustrating how its mechanisms

are articulated using simple representations for the competitor and relevance functions.

Next chapter presents an approach that provides, from a single model, a multi-

variate non-parametric approximation of the sample variance, the sample density, and

the target function. This approach, in its parametric version, will lately be embedded

in each competitor (see chapter 5), permitting a very specific relevance estimation, and

the definition of competitor functions with arbitrary shapes and complexities.
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Chapter 4

Q-Learning using Probability
Density Estimations

4.1 Introduction

In the previous chapter we introduced the benefits of using a competitive strategy for

function approximation in RL, and the formalisms of a competitive strategy called

degenerate function approximation (DFA). The DFA strategy consists in a set of com-

peting FAs, referenced as competitors, and a set of relevance functions, used to select

the best competitor for the inference at each evaluated point. In this chapter we present

a new approach for FA in RL based in a probability density estimation. This approach

will permit to use for each competitor a multi-parametric function approximation, and

to provide a precise calculation of the relevance of each competitor (3.21).

The approach consists in a multivariate probability density estimation of the ex-

perienced samples in the joint input-output space, from which it is possible to easily

derive a multi-parametric approximation of the target function, a multi-parametric es-

timation of the variance of the samples, as well as a precise estimation of the density

of samples experienced so far.

We chose to use a probability density model since it provides all the information we

need to enrich the DFA system. Density estimations are receiving increasing interest

in the field of machine learning [21], since they keep all the information contained in

the data. Despite being more demanding than simple function approximation (due to

the fact that they embody more information), their use for function approximation has
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been advocated by different authors [35, 36]. One reason is that simple and well known

tools, like the Expectation-Maximization (EM) algorithm, can be used to rapidly obtain

accurate estimations of the density function.

The work presented in this chapter will focus on the evaluation and formalization

of a probability density estimation approach for function approximation in RL. This

is done to test the feasibility of the approach in solving the problem of FA in RL

before using such density model for the instantiation of the competitor and relevance

functions in the DFA system. We will first introduce the mechanisms to use this

density estimation for an online memory-free approximation of a target function, to

lately propose a strategy that combines these mechanisms with those of Q-Learning for

the function approximation of the action-value function.

When using the probability density estimation for the problem of FA in Q-Learning,

the idea is to represent the density distribution of the observed samples in the joint

space of states, actions, and q-values, p(s, a, q). With this approach, it is possible to

obtain, for each given state and action, the probability distribution of q(s, a) as the

conditional probability p(q|s, a). From this distribution we can obtain an estimation

for the action-value, Q̂(s, a), as the expected value of q(s, a). In addition, we can obtain,

from the probability distribution p(q|s, a), the variance of q(s, a) 1.

As a further benefit of using density estimations, it is possible, by marginalization

on the state-action variables, to obtain the local sampling density in a point (s, a). This

information will be used to precisely estimate the number of samples influencing the

statistics (3.18). The precise information about the density of samples, together with

the probability distributions of the q-values for a given (s, a), can be used to define a

wide spectrum of exploration strategies. In this chapter we propose one exploration

strategy based on these quantities.

For the estimation of the density distribution we use a Gaussian Mixture Model

(GMM). This is a simple approach with large literature supporting its consistency and

efficiency for the estimation of multivariate densities [21]. The parameters of the GMM

are estimated with the EM method [29], which is originally defined for batch mode, i.e.

when all the samples are provided in advance. According to the requirements of our
1So that our approach also presents what has been argued to be an important feature of GPs

[28, 33].
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approach, we devise an online, memory-free, version of the EM. The density estimation

provides the information necessary to regulate the forgetting of past entries required

in online, memory-free, updating formulas. In our proposed updating formula, this

forgetting is concentrated only in the explored region, according to the amount of data

collected near the sample, and not as a function of time, which produces an inconsistent

forgetting in regions where no new information is provided. This prevents the undesired

distortion of the estimations in regions far from the experienced samples caused by the

biased sampling problem.

The outline of the chapter is the following. We first provide a brief introduction to

the Gaussian Mixture Model (GMM). Then, we present the outline of the Expectation-

Maximization algorithm (EM) for the calculation of the GMM parameters, and present

our proposal for the online, memory-free, version of the EM. Afterwards, the use of

the GMM for an online, memory-free, function approximation is presented, and how

this FA method is combined with Q-Learning for the approximation of the action-value

function. The method is lately tested on the benchmark task of controlling an inverted

pendulum with limited torque, where comparisons with state of the art methods are

carried out. The chapter finishes with a conclusion section.

4.2 The Gaussian Mixture Model

A Gaussian Mixture Model [21] is a weighted sum of multivariate Gaussian probability

density functions, and is used to represent general probability density distributions

in multidimensional spaces. It is assumed that the samples of the distribution to be

represented have been generated through the following process: first, one Gaussian is

randomly selected with a priori given probabilities, and then, a sample is randomly

generated with the probability distribution of the selected Gaussian. According to this,

the probability density function of generating sample x is:

p(x; Θ) =
K∑

i=1

αiN(x;μi,Σi), (4.1)

where K is the number of Gaussians of the mixture; αi, usually denoted as the mixing

parameter, is the prior probability, P (i), of Gaussian i to generate a sample; N(x;μi,Σi)

is a multidimensional normal Gaussian function with mean vector μi and covariance
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matrix Σi; and Θ = {{α1, μ1,Σ1}, ..., {αK , μK ,ΣK}} is the whole set of parameters of

the mixture. By allowing the adaption of the number K of Gaussians in the mixture,

any smooth density distribution can be approximated arbitrarily close [35]. The pa-

rameters of the model can be estimated using a maximum-likelihood estimator (MLE).

Given a set of samples X = {xt; t = 1, . . . , N}, the likelihood function is given by

L[X; Θ] =
N∏

t=1

p(xt; Θ). (4.2)

The maximum-likelihood estimation of the model parameters is the Θ that maximizes

the likelihood (4.2) for the data set X. Direct computation of the MLE requires com-

plete information about which mixture component generated which instance. Since this

information is missing, the EM algorithm, described in the next section, is often used.

4.3 The Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm [29] is a general tool that permits to

estimate the parameters that maximize the likelihood function (4.2) for a broad class

of problems when there are some missing data. The EM method first produces an esti-

mation of the expected values of the missing data using initial values of the parameters

to be estimated (E step), and then computes the MLE of the parameters given the

expected values of the missing data (M step). This process is repeated iteratively until

a convergence criterion is fulfilled.

For the case of an estimation for the GMM, the process starts with an initialization

of the mean vectors and covariance matrices of the Gaussians. The E step consists in

obtaining the probability P (i|xt) for each Gaussian i of generating instance xt, that we

denote by wt,i,

wt,i = P (i|xt) =
P (i)p(xt|i)

K∑
j=1

P (j)p(xt|j)
=

αiN(xt;μi,Σi)
K∑

j=1
αjN(xt;μj ,Σj)

, (4.3)

where t = 1, .., N and i = 1, ..,K. The maximization step consists in computing the

MLE using the estimated wt,i. It can be shown [31] that, for the case of a GMM, the
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mixing parameters, means, and covariances are given by

αi =
1
N

N∑

t=1

wt,i, (4.4)

μi =

N∑
t=1

wt,ixt

N∑
t=1

wt,i

, (4.5)

and,

Σi =

N∑
t=1

wt,i(xtx′
t)

N∑
t=1

wt,i

− μiμ
′
i, (4.6)

respectively.

4.3.1 Online EM

Estimating a probability density distribution by means of the EM algorithm involves

the iteration of E and M steps on the complete set of available data, that is, the mode

of operation of EM is in batch. However, we chose to use an online, memory-free,

approach, where data arrive sequentially, and none of them is stored. This prevents

the use of the batch EM algorithm, and requires an online, memory-free, version of

it. Several online EM algorithms have been proposed for the Gaussian Mixture Model

applied to clustering or classification of stationary data [17, 80].

The approach proposed in [80] in not strictly an on-line EM algorithm. It applies

the conventional batch EM algorithm onto separate data streams corresponding to suc-

cessive episodes. For each new stream, a new GMM model is trained in batch mode and

then merged with the previous model. The number of components for each new GMM

is defined using the Bayesian Information Criterion, and the merging process involves

similarity comparisons between Gaussians. This method involves many computation-

ally expensive processes at each episode and tends to generate more components than

actually needed. The applicability of this method to RL seems limited, not only for its
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computational cost, but also because, due to the non-stationarity of the Q-estimation,

old data should not be taken as equally valid during all the process.

The work of [17] performs incremental updating of the density model using no his-

torical data and assuming that consecutive data vary smoothly. The method maintains

two GMMs: the current GMM estimation, and the previous GMM of the same com-

plexity after which no model updating (i.e. no change in the number of Gaussians) has

been done. By comparing the current GMM with the historical one, it is determined

if new Gaussians are generated or if some Gaussians are merged together. Two ob-

served shortcomings of the algorithm are that the system fails when new data is well

explained by the historical GMM, and when consecutive data violate the condition of

smooth variation.

In [78], an on-line EM algorithm is presented for the Normalized Gaussian Network

(NGnet), a model closely related to the GMM. This algorithm is based on the works

of [56, 58]. In [58] a method for the incremental adaptation of the model parameters

using a forgetting factor and cumulative statistics is proposed, while in [56] the method

in [58] is evaluated and contrasted with an incremental version which performs steps of

EM over a fixed set of samples in an incremental way. The method proposed in [78] uses

foundations of both works to elaborate an on-line learning algorithm to train a NGnet

for regression, where weighted averages of the model parameters are calculated using a

learning rate that implicitly incorporates a time dependent forgetting factor to deal with

non-stationarities. Inspired by this work, we developed an on-line EM algorithm for the

GMM. Our approach uses cumulative statistics whose updating involves a forgetting

factor explicitly.

4.3.1.1 Our Proposal

The averages of equations (4.5), and (4.6), involved in the M step of the EM algorithm,

have the form

f̄n =

n∑
j=1

wjfj

n∑
j=1

wj

, (4.7)
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where 0 ≤ wj ≤ 1 indicates the proportion of the j-th sample fj used to calculate

the average. This formula is a generalization of the average formula (3.13), where the

samples are provided in their full proportions. For the cumulative sums used in (4.7)

we introduce the notation,

[f ]n =
n∑

j=1

wjfj, (4.8)

whose incremental version is simply,

[f ]n = [f ]n−1 + fnwn. (4.9)

Using this notation, the average (4.7) may be expressed as,

f̄n =
[f ]n
[1]n

, (4.10)

which allows an incremental calculation of it, by first updating the cumulative sums

for the numerator and denominator, and then performing their ratio. In our online

EM approach, we will adopt a similar strategy to calculate incrementally the averages

involved in the M step. To do this, for each new income, we calculate the activation

of each Gaussian using (4.3), though just for the incoming sample, and then update

incrementally all the cumulative sums involved in the M steps,

[1]t,i =
t∑

τ=1

wτ,i, (4.11)

[x]t,i =
t∑

τ=1

wτ,ixτ , (4.12)

[
xx′]

t,i
=

t∑

τ=1

wτ,i(xτx′
τ ). (4.13)
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For the simple case where all the samples are equally valid (no forgetting), the

averages (4.4), (4.5), and (4.6), can be calculated incrementally as,

αt,i =
[1]t,i

K∑
j=1

[1]t,j

, (4.14)

μt,i =
[x]t,i
[1]t,i

, (4.15)

and

Σt,i =
[xx′]t,i
[1]t,i

− μt,iμ
′
t,i, (4.16)

respectively.

However, when all the samples are not equally valid, like in non-stationary cases,

we need to consider some forgetting in the cumulative sums in order to discard past,

possibly outdated, values. The usual approach to do this is to consider a forgetting

factor λt in the following way

[[f ]]t = λt [[f ]]t−1 + ftwt, (4.17)

where the double brackets are used to distinguish the cumulative sum with a forgetting

factor λt, with respect to the sum without forgetting (4.9). λt, which ranges in [0,1],

is a time-dependent discount factor introduced for forgetting the effect of old values.

Observe that, for values of λt < 1, the influence of old data decreases progressively,

so that they are forgotten along time. This forgetting effect is attenuated when λt

approaches 1: in this case, old and new data have the same influence in the sum,

and equation (4.17) becomes equal to equation (4.9). As learning proceeds and data

values become more stable, forgetting them is no more required and λt can be made to

progressively approach 1 to reach convergence.

Using one such time-discounted sum is the strategy followed in [78] to include a

forgetting in the calculation of the averages in their online EM approach 1. However,
1In [78] time-discounted weighted average, instead of sums, are defined by normalizing the
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we argue that such forgetting is only justified when samples are provided in their full

proportions, i.e. w = 1, since when samples are provided in a proportion less than 1,

the formula (4.17) carries out a forgetting larger than the new information provided,

producing an unlearning effect.

For instance, when the proportion of a sample provided for the updating is null, i.e.

wt = 0, equation (4.17) is

[[f ]]t = λt [[f ]]t−1 , (4.18)

showing that the accumulator will wrongly decay to 0 when no new information is

provided.

Therefore, we need to devise a forgetting formula that only forgets past experiences

in the same proportion of the new experiences provided. To address this problem,

we use the sampling density information to modify the updating formula (4.17). The

idea is that the new updating formula should produce a forgetting of old estimations

as long as new information is provided, and not just as a function of time. Since the

proportion wt is indeed a measure of how much information is provided, we will regulate

the forgetting according to this proportion.

For the sake of formalization, we introduce the mass-discounted sum {f}t, for which

the mass-discounted mean of f will be obtained,

f̄t =
{f}t
{1}t . (4.19)

The definition of {f(x)}t is made according to the following modification of (4.17),

{f}t = Υt

({f}t−1, wt

)
= Λt(wt){f}t−1 + Ωt(wt)ft, (4.20)

sum [[f ]]t,i =
tP

τ=1

„
tQ

s=τ+1

λs

«

fτ,iwτ,i, whose incremental version is (4.17), with a factor ηT =

„
TP

t=1

TQ

s=t+1

λs

«−1

. When using these normalized sums in the expression of their estimations involved

in the M step, all these ηT cancel out, making the time-discounted weighted average equivalent to the
average calculated from the cumulative sums.
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where wt denotes the proportion of the sample ft used for the updating, Υt (f,w) is

a two parameters function defined as shown using the two auxiliary single parameter

functions Λt(w) and Ωt(w), which we have to define appropriately so that the forgetting

effect depends on the weight wt used in the updating step. To determine these functions,

we must first specify the conditions they must fulfil. Of course, we expect that when

performing a complete update, that is, when wt = 1, the effect of updating (4.20) is

equivalent to that of (4.17). Therefore,

Υt

({f}t−1 , 1
)

= λt {f}t−1 + ft. (4.21)

Noting that this equation must hold for any assignment of the independent values

{f}t−1 and ft, we must have,

Λt(1) = λt, (4.22)

Ωt(1) = 1. (4.23)

To completely determine these two functions, we need to establish their behaviour for

arbitrary values of w. For consistency, if at time t we perform an update with weight

w = w1 + w2, the result should be the same as if we apply two consecutive updates,

both at time t, with weights w1 and w2, respectively,

Υt ({f}t−1, (w1 + w2)) = Υt (Υt ({f}t−1, w1) , w2) . (4.24)

Equation (4.24) is a functional equation for Υt, and it defines implicitly corresponding

functional equations for its constitutive function Λt and Ωt. Developing the left-hand

side of (4.24) using (4.20) gives,

Υt

({f}t−1 , (w1 + w2)
)

= Λt(w1 + w2) {f}t−1 + Ωt(w1 + w2)ft. (4.25)

Now, developing the right-hand side of (4.24),

Υt (Υt ({f}t−1, w1) , w2) = Λt(w2)Υt ({f}t−1, w1) + Ωt(w2)ft

= Λt(w2) (Λt(w1){f}t−1 + Ωt(w1)ft) + Ωt(w2)ft

= Λt(w2)Λt(w1){f}t−1 + (Λt(w2)Ωt(w1) + Ωt(w2)) ft,
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so that equation (4.24) reduces to,

Λt (w1 + w2) {f}t−1 + Ωt (w1 + w2) ft

= Λt(w2)Λt(w1){f}t−1 + (Λt(w2)Ωt(w1) + Ωt(w2)) ft.

As before, we conclude that the factors of the independent values {f}t−1 and ft must

be the same at both sides,

Λt (w1 + w2) = Λt(w2)Λt(w1) (4.26)

Ωt (w1 + w2) = Λt(w2)Ωt(w1) + Ωt(w2). (4.27)

The solution of the functional equation (4.26) is well known to be of the form Λt(w) =

Aw, and the value A can be determined using the condition (4.22),

A = Λt(1) = λt. (4.28)

Hence,

Λt(w) = λw
t . (4.29)

Now, using this result in (4.27), and making w1 + w2 = 1, the equation (4.27) leads to,

Ωt(1) = Ωt(w1 + w2) = λw2
t Ωt(w1) + Ωt(w2) = 1, (4.30)

and also,

Ωt(1) = Ωt(w2 + w1) = λw1
t Ωt(w2) + Ωt(w1) = 1. (4.31)

Solving the system of two equations established by (4.30) and (4.31) we get

Ωt(w1) =
1− λw1

t

1− λt
. (4.32)
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This completes equation (4.20) and allows us to write its sought form, now including

the reference to the Gaussian, i,

{f}t,i = λ
wt,i

t {f}t−1,i +
1− λ

wt,i

t

1− λt
ft,i. (4.33)

With the updating formula (4.33) 1 , the power wt,i prevents undesired changes in

the parameters of the Gaussians which are not responsible of generating the observed

values. Thus, if we make wt,i = 0 in (4.33), what we get is

{f}t,i = {f}t−1,i, (4.34)

so that the values of the statistics of the inactive units remain unchanged. On the other

hand, in the limit case of wt,i = 1, corresponding to a full activation of unit i, the effect

of the new updating formula is the same as before,

{f}t,i = λt{f}t−1,i + ft,i. (4.35)

To evaluate the forgetting effect for activations in (0,1), we perform a simple test

using three different sequences of samples, and their corresponding activations, of the

form seqi = ({w0, f0}, . . . , {wt, ft}),

seq1 = ({1, 10}, {0.2, 1}, {0.2, 1}, {0.2, 1}, {0.2, 1}, {0.2, 1}, {1, 1}),
seq2 = ({1, 10}, {0.5, 1}, {0.5, 1}, {1, 1}),
seq3 = ({1, 10}, {1, 1}, {1, 1}).

All the sequences provide the same cumulative quantity of 12, with an average, without

forgetting, of 4. The difference among the sequences is that the middle terms provide

the same amount of information split in different proportions. For instance, in sequence

seq1, the amount 1 is split in five time steps, each with a proportion of w = 0.2.

1Note that, the expression (1 − λ
wt,i
t )/(1 − λt) in the second term in (4.33) is undetermined when

λt = 1. In order to determine its value when λt = 1, we apply the l’Hopital’s rule, deriving the
numerator and the denominator with respect to λ. This yields (−wt,iλ

wt,i−1
t )/(−1), which, for λt = 1,

gives the value that should be used for this expression in such a case, (−wt,i1
wt,i−1)/(−1) = wt,i.
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We compare the averages of the samples provided by each sequence, calculated using

the time-discounted sums (4.17), and using the mass-discounted sums (4.33). The

forgetting factor λ is set to λ = 0.9 in both cases.

For the case of the average calculated using the mass-discounted sums, we obtain, for

all the sequences, the same average of f̄ = 3.69. This corroborates that the forgetting

is based on the quantity of information provided, rather than on time, since it does not

matter on how many time steps the middle quantity is split. In contrast, the averages

calculated using a time-discounted sum (4.17) are,

f̄seq1 = 3.11,

f̄seq2 = 3.54,

f̄seq3 = 3.69,

reflecting that forgetting depends on time: the larger the number of time steps in

which the middle amount 1 is split, the larger the forgetting effect. The undesired

forgetting effect is evidenced more clearly if we split the middle quantity of 1 in 100

time-steps, each with a proportion of 0.01. In this case, the average using space-

discounted sums is again f̄ = 3.69, while the average calculated using time-discounted

sums is merely f̄ = 1.00, evidencing a strong time-dependent forgetting. In general,

the average calculated with time-discounted sums would decrease to one as the amount

1 is split in more time steps.

We will use the mass-discounted cumulative sums for the calculation of the param-

eters involved in the M step of the online EM,

αt,i =
{1}t,i

K∑
j=1
{1}t,j

, (4.36)

μt,i =
{x}t,i
{1}t,i , (4.37)

and

Σt,i =
{xx′}t,i
{1}t,i − μt,iμ

′
t,i. (4.38)
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4.4 Function Approximation using Probability Density Es-
timations

In this section we will present an online memory-free function approximation using a

probability density estimation, represented with a GMM. We make the approach non-

parametric by permitting Gaussian generation on demand for a better approximation.

We assume that there is an arbitrary unknown target function f(x) defined in a D-

dimensional continuous domain X ⊂ 
D, that should be approximated, from which we

can only observe its values at particular points obtained sequentially, (xt, yt), where

the output yt = f(xt) is supposed to be uni-dimensional 1 , and t accounts for the t-th

time step.

In this case, the samples provided to the density model are of the form (xt, yt), and

the joint probability distribution estimated with a GMM is

p(x, y; Θ) =
K∑

i=1

αiN(x, y;μi,Σi). (4.39)

From this probability distribution, we can obtain an approximation of the target func-

tion as

f(x) ≈ E [y|x; Θ] = μ(y|x; Θ). (4.40)

To compute this, we must first obtain the distribution p(y|x; Θ). In the sequel we

omit the reference to the parameters Θ for clarity in the formulas. Decomposing the

covariances Σi and means μi in the following way:

μi =
(

μx
i

μy
i

)
, (4.41)

Σi =
(

Σxx
i Σxy

i

Σyx
i Σyy

i

)
, (4.42)

1We suppose a uni-dimensional output since it suffices for the type of functions we will use. However,
all the formulations that follow can be easily extended to the multidimensional case.
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the probability distribution of y, for the given input x, can then be expressed as 1 ,

p(y|x) =
K∑

i=1

βi(x)N (y;μi(y|x), σi(y)) , (4.43)

where

μi(y|x) = μy
i + Σyx

i (Σxx
i )−1 (x− μx

i ) , (4.44)

σ2
i (y) = Σyy

i − Σyx
i (Σxx

i )−1 Σxy
i , (4.45)

and

βi(x) =
αiN(x;μx

i ,Σxx
i )

K∑
j=1

αjN(x;μx
j ,Σxx

j )
. (4.46)

From (4.43) we can obtain the estimation of f(x) as the conditional mean, μ(y|x), of

the mixture at a point x as

f(x) ≈ μ(y|x) =
K∑

i=1

βi(x)μi(y|x). (4.47)

4.4.1 Gaussian Management

Since the main purpose of our GMM is to approximate a target function f to any desired

precision, the generation of new Gaussians is principally driven by the need to better

approximate the set of observed y values, more than better approximate the density of

samples in the joint space. There are many aspects to take into account in Gaussian

generation to avoid large distortion in the approximation when new Gaussians are

added, and to permit an improvement in the approximation in the short term. Here we

propose one alternative that, even though simple, permits to improve the approximation

fairly fast and with little distortion.
1In general, the probability density model results very useful in the approximation of stochastic

functions since it provides an estimation of the probability distribution of the output variable y for any
given input x.
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A new Gaussian is generated when the two following conditions are satisfied: 1)

The estimation error of the observed sample is larger than a predefined value ec,

(f(x)− μ(y|x))2 ≥ ec, (4.48)

and 2) the number of samples accumulated in {1}i for all the Gaussians with non-

negligible probability density pi(x) = N(x;μx
i ,Σxxi), is above a confidence threshold

nc. The imposition of this condition prevents the generation of Gaussians when there

are other Gaussians with chances of improving the approximation when more samples

are experienced. We use the marginal probability pi(x), instead of the joint probability

pi(x, y), since we are interested in testing the amount of inputs captured by the Gaussian

in the input space: note that, a low pi(x, y) may be caused by a the non-stationarity of

the target function which shifts the output y far from the Gaussian mean, which makes

the joint probability pi(x, y) to decrease.

The Gaussians with higher marginal probabilities are determined as,

I = {i|pi(x)/
K∑

j=1

pj(x) > βc}, (4.49)

where the threshold for the relative marginal probability, βc, ranges in [0,1]. Then, the

minimum number of samples is obtained as,

nmin = min
i∈I
{1}i. (4.50)

Finally, the evaluation of the second criterion is expressed as,

nmin > nc. (4.51)

Whenever both criteria are fulfilled, a Gaussian is generated with parameters given

by,

{1}K+1 = 1, (4.52)

μK+1(x, y) = (xt, yt), (4.53)
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Algorithm 5 Function Approximation with a GMM Probability Density Estimation
initialize the GMM with a set of Kini Gaussians.
loop

get observation < x, y >
calculate the activation wi of each Gaussian in (x, y) (4.3) (E step)
update the GMM parameters given by (4.36), (4.37), and (4.38) using (4.33) (M
step)
calculate μ(y|x) (4.47)
calculate the approximation error e = (y − μ(y|x))2

get the minimum number of samples nmin (4.50)
if nmin < nc & e < ec then

generate new Gaussian (section 4.4.1)
end if

end loop

ΣK+1 = C diag{d1, ..., dD , dy}, (4.54)

where di is the total range size of the variable i; D is the dimension of the domain; and

C is a positive value defining the dispersion of the new Gaussian.

4.4.2 Algorithm for the FA using Probability Density Estimations

The complete algorithm for the online memory-free function approximation using prob-

ability density estimations is presented in algorithm 5.

4.5 Variance Estimation using Probability Density Esti-

mations

One of the most remarkable features of a joint density model is that it permits to

calculate, point to point, the variance of the samples. For the case of a density model

represented with a GMM, the sample variance is calculated as,

σ2(y|x) =
K∑

i=1

βi(x)(σ2
i (y) + (μi(y|x)− μ(y|x))2). (4.55)

The value σ2(y|x) reflects the point to point approximation error with which the FA

carried out from the GMM (4.47) approximates a given target function, and, also, the
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intrinsic variability of the data when the target function is stochastic.

4.6 Estimating the Number of Samples in a Region

Another benefit of using a probability density estimation for FA is that we can estimate

the number of samples in a region X̃ ⊂ X surrounding x. As done before (section

3.3.1.2), we calculate the number of samples in a region X̃ as,

ñ = n

∫

X̃
p(x)dx. (4.56)

To simplify the calculations of the integral in (4.56), we assume that for regions X̃

in which the density of samples is homogeneous the value for the probability density

estimation is constant, and equal to p(x), which permits to estimate the number of

samples as,

ñ ≈ Ṽ n p(x; Θ), (4.57)

where

n =
K∑

i=1

{1}i (4.58)

is the total number of samples contemplated in the density model,

p(x; Θ) =
K∑

i=1

αiN(x;μx
i ,Σxx

i ) (4.59)

is the probability density estimation in X provided by the GMM, and Ṽ is the volume

of the region X̃ . This number of samples will be used to credit the estimations μ(y|x)

and σ2(y|x).

4.7 Q-Learning using Probability Density Estimations

In this section we present a method for FA in Q-Learning in continuous state and action

spaces using probability density estimations represented with a GMM (referenced from
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now on as the GMMRL method). In this case, the samples provided to the GMM are

of the form (s, a, q), where s is an observed state, a is the executed action at that state,

and q is the estimated cumulative reward calculated as,

q(s, a) = r(s, a) + γ max
a

(Q̂(s′, a)), (4.60)

where r(s, a) is the immediate reward obtained after executing action a in state s, s′ is

the state observed after the action execution, and Q̂(s′, a) is the approximation of the

action-value function at (s′, a) calculated from the GMM, Q̂(s′, a) = μ(q|s′, a) (4.47).

To compute the value q(s, a) we need to solve the maximization problem max
a

(Q̂(s′, a)).

The analytical solution to this problem is complicated, but an approximated value can

be obtained by numerical techniques. In our implementation, we adopt the simple

strategy of computing the values Q̂(s′, a) for a finite number of actions, and then taking

the value of the action that provides the largest Q as the approximated maximum.

4.7.1 Exploration-Exploitation Strategy

From the action-value function approximation it is possible to exploit what has been

learned so far by taking the action with highest Q̂(s, a) in every situation s the system

comes across,

a = π (s)

= argmax
a′

Q̂(s, a′). (4.61)

However, for the learning of the optimal action values, exploratory actions should

also be taken. This is the exploration-exploitation trade-off presented in section 2.2.

A simple exploration strategy is the plain ε-greedy policy, that takes actions from the

greedy policy (4.61) with probability 1 − ε, and exploratory actions with probability

ε. A more sophisticated strategy is the Boltzmann exploration [81] which defines the

probability of executing an action according the values Q̂(s, a) of each evaluated action,

p (a|s) =
eQ̂(s,a)/T

∑
a′ eQ̂(s,a′)/T

, (4.62)
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where T is a positive parameter, called the temperature, that is made to decrease with

time, and which regulates the importance of the values Q̂(s, a) in the probability: the

higher the temperature the lower the importance of Q̂(s, a). A high temperature is

preferred at the beginning of the learning process to decrease the importance of still

poor estimations of Q̂(s, a).

Another exploration strategy is proposed in [39], which uses the uncertainty in the

estimation of Q̂(s, a). In this strategy the upper bound of the confidence interval for

the unknown value Q(s, a) is used as the inferred value Q̂(s, a) in the evaluation of

(s, a). This favours the exploration of actions that have some chances of getting a large

q(s, a) in the experienced states. With this strategy, actions for which the estimation

of Q(s, a) is uncertain will have large confidence intervals and may be preferred in

detriment of actions with smaller upper bounds for Q(s, a), hence contributing to reduce

the uncertainty at less explored regions.

Our proposal

Our proposal for exploration is similar to that in [39], as it is also based on the uncer-

tainties of the estimations Q̂(s, a). However, instead of using a deterministic strategy

of using the upper bound of the confidence interval for Q(s, a), our strategy allows the

system to predict a Q̂(s, a) at random, with a probability distribution that corresponds

to the current knowledge we have about Q(s, a).

We know from Statistics that the variable defined as

Ȳ − μ√
S2/n

, (4.63)

has a t-distribution with n − 1 degrees of freedom [22], where Ȳ is the sample mean

calculated from a set of observations as in (3.5), μ is the unknown mean, S2 is the

sample variance, estimated as in (3.6), and n is the number of samples used for the

estimations. Replacing the quantities in (4.63) for their corresponding counterparts in

the estimation of the mean value Q(s, a) we have

Q̂(s, a)−Q(s, a)√
S2(s, a)/n(s, a)

∼ t(n(s, a)− 1), (4.64)
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where Q(s, a) is the actual (unknown) expected value of q(s, a), Q̂(s, a) = μ(q|s, a) is

the point-dependent sample mean (4.47), S2(s, a) = σ2(q|s, a) is the point-dependent

sample variance (4.55), and n(s, a) is the number of samples in the surrounding of (s, a)

estimated as in (4.57). Then, our strategy for exploration consists in selecting a value

trand of this random variable according to the t-distribution with n(s, a)− 1 degrees of

freedom, and finding the corresponding Q̂rand(s, a) as,

Q̂rand(s, a) = Q̂(s, a)− trand
S(s, a)√
n(s, a)

. (4.65)

Once a Q̂rand(s, a) value has been assigned to every evaluated action in the current

situation, the action to be executed is selected using the greedy policy (4.61),

a = argmax
a′

Q̂rand(s, a′). (4.66)

This point-dependent exploration strategy automatically regulates the exploration ac-

cording to the needs of each precise region around (s, a). More uncertain estimations

of Q(s, a) will have higher variance S2(s, a), and Q̂rand(s, a) will have a higher range of

variation. This favours the exploration of regions with higher uncertainties in Q̂(s, a).

On the other hand, less explored regions will have low values of n(s, a) ≈ Ṽ n p(s, a),

which also increases the range of variation of Q̂rand(s, a). Hence, equation (4.65) also

favours the exploration of less sampled regions. Finally, this exploration strategy per-

mits to exploit more certain knowledge so as to better conduct the exploration to

interesting regions. Note that, the exploitation of more certain actions would not be

possible by just using the upper bound of the confidence interval for Q(s, a), as carried

out in the work [39].

4.8 Performance Evaluation

To evaluate the performance of the of GMMRL method we use the classical benchmark

problem of swinging up and stabilizing an inverted pendulum with limited torque [30].

The task consists in swinging the pendulum until reaching the upright position and

then stay there indefinitely. The optimal policy for this problem is not trivial since,

due to the limited torques available, the controller has to swing the pendulum several
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times until its kinetic energy is large enough to overcome the load torque and reach

the upright position. Thanks to its simplicity but still challenging control task, this

benchmark is widely used to test the performance of state of the art methods for

function approximation in RL [26, 28, 70, 73]. The scenario for the inverted pendulum

is depicted in figure 4.1.

Figure 4.1: Inverted pendulum benchmark.

The dynamics of the inverted pendulum is modelled as,

ml2θ̈ = −μθ̇ + mgl sin θ + a, (4.67)

where θ is the angular position, l is the length of the link, m the mass of pendulum

(assumed to be concentrated at the distal end with respect to the joint), g the gravity

constant, μ the friction factor, and a the input torque. In our simulations we use the

values l = m = 1, g = 9.8, μ = 0.01, and an input torque a ranging in [−5, 5]. For the

simulation we use the Euler method with a differential for time of dt = 0.001 seconds

and an actuation interval of 0.1 seconds.

The state-action space is three-dimensional, configured by the angular position θ,

the angular velocity θ̇, and the action. We take advantage of the symmetry of the

problem by identifying states with inverted angular position and velocity: (θ, θ̇, a) ∼
(−θ,−θ̇,−a). As the reward signal we simply take minus the absolute value of the

angle of the pendulum from its top position: r(θ, θ̇) = −|θ| which ranges in the in-

terval [−π, 0]. In this application, the probability density model is defined in the

four-dimensional joint space x = (θ, θ̇, a, q).
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To solve the maximization max
a

(Q̂(s′, a)) we use a set of actions obtained from a

uniform sampling of the action variable with period 0.1. The discount coefficient γ is

set to 0.85.

Reference Methods

Three performance comparisons are carried out.

The first one is by contrasting the results of the FA with a GMM using the two dif-

ferent discounted sums in the online EM: the mass-discounted sum formula (4.33), and

the time-discounted sum formula (4.17). This is done to show the gain in considering

a forgetting based on the new information provided, rather than on time.

The second is done by comparing our results with those of the Neural Fitted Q-

Iteration [71] (section 2.3.4), as it is one of the most remarkable methods in continuous

function approximation for Q-Learning that uses the benchmark of the inverted pen-

dulum.

Finally, the third comparison is done with the results of [77], since their approach

shares many similarities with ours. They use a normalized Gaussian network (NGnet)

[52] to approximate the action-value function Q(s, a), and another one to approximate

the policy function, in an actor-critic approach. The function representation of the

NGnet is,

y =
K∑

i=1

⎛

⎜⎜⎜⎝
Ni(x;μi,Σi)

K∑
j=1

Nj(x;μi,Σi)

⎞

⎟⎟⎟⎠ (Wix + bi) , (4.68)

where Ni is a Gaussian, defined in the domain, and {Wi, bi} are the parameters of an

hyperplane. The approach proposed in [77] consists in finding the set of parameters

{μi,Σi,Wi, bi}, i = 1, . . . ,K, to better approximate the action-value function, using

an online EM version [78] with a time-dependent forgetting factor. The approach is

also non-parametric since it implements a unit generation strategy. Note that, in their

approach the approximation of the target function carried out by each unit, is explicitly

represented by the hyperplane with parameters {Wi, bi}.
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Initialization and Settings

The common settings of our system consist in the following. We provide the system

with 10 initial Gaussians. The elements of the mean μi of the mixture component i are

selected randomly in the range of the corresponding variable, except for the q variable

that is initialized to the maximum possible value to favour exploration of unvisited

regions 1. The initial covariance matrices Σi are diagonal and the variance for each

variable is set to 20% of the total span of its range. Each Gaussian is initialized with

an accumulated number of samples {1}i = 0.1. This small value makes the component

i to have little influence in the estimation while there is no, or little, updating. Note

that, the rest of the accumulators are derived from the Gaussian mean and covari-

ance, and the accumulator {1}i. For instance, the initial accumulator for the sampled

points (s, a, q) would be {(s, a, q)}i = μ(s, a, q)i{1}i. The discount factor λt for the

computation of the discounted sums takes values from the equation,

λt = 1− 1/(at + b), (4.69)

where a determines its growth rate toward 1, and b fixes the initial value of λt, and

regulates the influence of a. In our experiments we set a = 0.001, and the value of

b depends on whether the updating formula is using mass-discounted sums (4.33) or

time-discounted sums (4.17). For the case of using mass-discounted sums the value b

is set to b = 10, and when the time-discounted sums are used, b is set to b = 1000, to

compensate for the effect of the exponent wt,i < 1 in sparsely sampled regions. Finally,

the thresholds for the approximation error, for the minimum number of samples, and

for the relative marginal probability, are set to ec = 0.025 ∗ rangq, nc = 200, and

βc = 0.1, respectively, where rangq is the total span of the q variable.

Results: Time-Discounted Forgetting versus Mass-Discounted Forgetting

For the comparison between the performance of the FA with a GMM using time-

discounted sums and mass-discounted sums, we carried out the experiments using

episodes of 500 iterations. At the beginning of each episode, the pendulum is placed
1The maximum value for the q variable can be calculated from equation (4.60) as a sum of an

infinite series, instantiating the reward, at each term, to the maximum possible value.
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Figure 4.2: Comparison between the performance of the GMMRL approach using time-
discounted sums and using mass-discounted sums.

in the hang-down position. At the end of each episode, a test of 500 iterations is per-

formed exploiting the policy learned so far. As the result of the test we take the sum of

the rewards obtained at each iteration. For each experiment we calculate the average

of 15 independent runs of 100 test episodes.

Figure 4.2 shows the results of the comparison. The results indicate that the pro-

posal using the mass-discounted sums (in red) achieves convergence significantly faster

than when using time-discounted sums (in blue). The worst performance of the method

using time-discounted sums is produced by the undesired forgetting of the experiences

far from the currently sampled region. This problem is accentuated at early stages of

the learning, when the sampling is very variable due to a large variations in the ex-

ploration strategy produced by policy adaptations. This effect is greatly reduced when

the mass-discounted sums are used, as shown by the red plot.

Figures 4.3 and 4.4 illustrate two projections of the Gaussians of a typical GMM

obtained after a training episode with mass-discounted sums. It can be seen that they

are not equally distributed along the whole configuration space, but concentrate in the

most common trajectories of the system, what constitutes an efficient use of resources.
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Figure 4.3: Distribution of Gaussians in a projection of the joint space to the state
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Figure 4.4: Distribution of Gaussians in a projection of the joint space to the (θ, q)
space.
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Figure 4.5: A stroboscopic sequence obtained from placing the pendulum in the hang-
down position.

Finally, to illustrate the control reached we present in figure 4.5 a control from the

position of the pendulum hanging down.

Results: Comparison with Neural Fitted Q-Iteration

Since the NFQ strategy [71] works in a batch mode, we compare the results by taking

into account the total number of times the system needs to be updated to achieve the

control. Riedmiller reports that the swing-up and balance task required 100 iterations

of the NFQ algorithm, each one requiring 1000 epochs of batch learning with the

Rprop learning algorithm to train the neural net with an unspecified number D of

samples. This gives a total of 100000×D sample updates. In our approach using mass-

discounted sums (red plot in figure 4.2), good control is obtained after approximately

28× 500 = 14000 updates, which is significantly better. This proves that our approach

provides an efficient strategy for FA in Q-Learning. However, for a rigorous comparison

with NFQ, we would need to test the system in the same real platform used in the work

[71].

Results: Comparison with NGnet

After the comparison with [71], we evaluate more exhaustively the performance of the

FA with a GMM comparing its results with those of the NGnet presented in [77]. To

do this, we use the same setting for the experiments of that work, using episodes of 70

iterations. After each episode the pendulum is randomly placed inside an arch centred
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Figure 4.6: Results of the experiments with mass-discounted updating in the inverted
pendulum task, using the same experiments set-up as in [77].

in the upright position. The length of the arch is steadily incremented with each

episode. The performance is evaluated computing the average for 15 experiments of

100 episodes each, of the total accumulated reward per episode obtained by exploiting

the policy learned so far.

The result of the GMMRL approach is shown in figure 4.6. With the GMMRL the

convergence takes place in around 28 episodes, with an average number of Gaussians

of 40. In [77], the reported number of episodes to reach convergence is 40, and the

number of components of the NGnet needed to approximate the critic is 108 (for a fair

comparison, the components of the actor of the NGnet are not taken into account).

We would like to note that our best result in the 15 runs using mass-discounted sums

converged in 11 espisodes with 29 Gaussians.

4.9 Conclusions

We proposed a new approach for function approximation in Q-Learning for continuous

state-action spaces, in which a Gaussian Mixture Model, that estimates the probability

density in the joint state-action-qvalue space, is used for function approximation. From

94

CH4_NGnet_GMM.eps


4.9 Conclusions

this joint distribution we can obtain, not just the expected value of q for a given state

and action, but a full probability distribution p(q|s, a) of the q variable at each given

(s, a), that is used to define a directed exploration-exploitation strategy.

As a further benefit, from the density estimation in the joint space we can also obtain

the sample density in the state-action space. This information is used to remedy the

problem of biased sampling inherent to Reinforcement Learning. For this, we modified

the incremental updating rule of an on-line EM algorithm in order to avoid forgetting

data of less frequently sampled regions, even when exploration is repetitively done near

the goal configurations.

Tests performed on a classical RL problem, the swing-up and balance of an in-

verted pendulum, show that our approach improves the results of previous works. The

comparison between our basic approach, using the time-discounted updating formula

(4.17), and the proposed formula of mass-discounted updating (4.33), shows that the

approach is effective in reducing the perturbing effect of biased sampling.

Finally, the point-dependent estimations of the mean, variance, and number of

samples obtained from the joint density model will be used for the definition of a DFA

approach for FA in Q-Learning. This is the main thread of next chapter.
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Chapter 5

Q-Learning with a Degenerate
Function Approximation

5.1 Introduction

This chapter presents the method that implements the main idea of this thesis: the

use of competing function approximators to face the problem of generalization in RL.

Our principal argument is based on the fact that trying in parallel different ways of

approximating the value function increases the chances of having a good approximator

among the competing ones, increasing, in turn, the chances of generalization.

The idea of a competitive strategy for function approximation was implemented in

chapter 3, through a new approach called degenerate function approximation (DFA).

The DFA approach tries in parallel different function approximations, named as com-

petitors Φi(x, ξi), which are defined in different regions of the target function domain.

The DFA approach selects, at each point x, the competitor with the best estimated

quality in the approximation among all the competitors. To perform this selection, we

associate to each competitor a relevance function (3.21), which quantifies the approx-

imation quality of the competitor at each point. The relevance of a competitor in a

point is calculated taking into account the accuracy of its approximation, through a

point-dependent sample variance S2
i (x, τi), and the confidence in this approximation,

through a point-dependent estimation of the sample density in the input space pi(x, ςi).

In chapter 3 we also analysed the behaviour of the DFA system when samples are

provided with a biased distribution, which is a characteristic problem of FA in RL, and

96



5.2 Degenerate FA using Probability Density Estimations

saw that, in order to produce a correct selection of the competitor under biased sam-

pling, the relevance of a competitor should be represented precisely, providing a good

point-dependent estimation of the quality in the approximation. This is because, under

biased sampling, a constant-valued relevance for all the competitor’s domain reflects

mainly the approximation quality at the most frequently sampled regions, providing a

weak indication of this quality at sparsely sampled ones.

In chapter 4 we devise a new approach for FA in RL based on a probability density

estimation. From the probability density model, we can easily derive, through the

conditional probabilities, a point-dependent estimation of the sample mean (4.47), as

well as a point-dependent estimation of the sample variance (4.55). In addition, from

the density model we can estimate the number of samples involved in the estimation of

the mean and variance at each point (4.57). All these estimations are easily updated

using a novel online, memory-free, version of the Expectation-Maximization algorithm

(section 4.3.1).

In this chapter we bring together the GMM approach of chapter 4 and the DFA

approach of chapter 3, to define a method for FA in Q-Learning using a competitive

strategy. This is implemented by embedding a GMM in each competitor. This permits

to estimate the quality in the approximation at a given point, calculating the relevance

using the point-dependent estimation of the variance (4.55), and the point-dependent

estimation of the number of samples (4.57). Even more, the GMM permits to define a

multi-parametric competitor function through the point-dependent sample mean (4.47).

The organization of this chapter is as follows. Next section explains the outlines of a

FA approach consisting in a DFA using probability density estimation. Then, in section

5.3, the mechanisms for FA in Q-Learning using the DFA are presented, to lately test

these mechanisms in three different difficulty tasks: the swing-up and balancing of an

inverted pendulum with limited torque, the mountain-car, and the cart-pole balancing.

5.2 Degenerate Function Approximation using Probabil-
ity Density Estimations

Before entering into the details of how a competing strategy implemented with the DFA

approach is used for function approximation in RL, we instantiate the DFA approach
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using the estimations derived from the probability density estimation in the joint space.

To this end, we embed in each competitor Φi, a GMM defined in the domain of the

competitor, Xi. We refer to such a GMM as pi(x, y; Θi), where Θi are the GMM

parameters Θi = {{αi,1, μi,1,Σi,1}, ..., {αi,K , μi,K ,Σi,K}}. From this model we define

the competitor function as (4.47),

Φi(x, ξi) = μi(y|x; Θi), (5.1)

where μi(y|x; Θi) is obtained as the expected value of the conditional probability

pi(y|x; Θi) (4.43). In turn, the estimated relevance function (3.21), rewritten here

for convenience,

Γi(x, νi) ≈ χ2
α (hi)

hi S2
i (x, τi)

, (5.2)

where hi = Ṽi ni pi(x, ςi)−1, is defined using the estimation of the variance as in (4.55),

S2
i (x, τi) = σ2

i (y|x; Θi), (5.3)

and the estimation of the number of samples as in (4.57),

ñi ≈ Ṽi ni pi(x; Θi), (5.4)

where

pi(x; Θi) =
K∑

j=1

αi,jN(x;μx
i,j ,Σ

xx
i,j ), (5.5)

is the probability density in the domain derived from marginalizing the variable y in

pi(x, y; Θi) (4.59), ni is the total number of samples represented in the density model

(4.58),

ni =
K∑

j=1

{1}i,j , (5.6)
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and Ṽi is the volume of the region X̃i surrounding x, which is defined empirically so as

to have homogeneous values for μi(y|x; Θi) and σ2
i (y|x; Θi) in that region. Note that,

in this case, the parameters for all the point-dependent estimations of the DFA system,

i.e. ξi, τi, and ςi, are those from the corresponding GMM, Θi.

Equations (5.3) and (5.4) provide precise estimations of the variance and number of

samples, respectively, which permits, in turn, a point-dependent estimation of the qual-

ity in the approximation through the relevance (5.2), making the competitor selection

robust to the biased sampling problem. In addition, the multi-parametric definition of

the competitor (5.1) permits approximating a rich set of functions in the competitor

domain.

5.2.1 Competitor Management using Probability Density Estimations

So far we have focused in the definition of the DFA regarding the competitors and

relevance functions, and little attention was given to the mechanisms for competitor

generation. In this section we propose an approach to generate competitors on demand

for a better approximation, when the competitors provided so far do not suffice. Note

that the approximation may be refined either by generating new Gaussians at each

competitor, by generating new competitors, or by combining both strategies. Given

that a representation with few parameters adapts faster than a complex representation,

the number of Gaussians per competitor is kept fixed to favour more rapid convergence.

We also propose a strategy to eliminate competitors that had been generated to improve

the approximation, but later became less useful for the system as a consequence, for

instance, of the non-stationarity of the target function.

The purpose of competitor generation is to find, incrementally, the regions of the

domain in which the target function can be well approximated with the GMM provided

to each competitor. This implies that, the generalization capabilities of the DFA will

depend on whether the approximated function presents wide regions of this kind, and

the ability of the method to create competitors which capture these regularities.

For the competitor generation we adopt the optimistic assumption that the target

function presents large regions of the domain which are well approximated with K
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Gaussians, initializing the system with few competitors with large domains 1. K is the

fixed amount of Gaussians provided to the GMM of each competitor.

5.2.1.1 Evaluating the Approximation

In order to evaluate the necessity of improving the approximation with the generation

of new competitors, we should define the criteria that permit to distinguish between

a poor approximation caused by the lack of competitors, and a poor approximation

produced by other reasons, like, for instance, the lack of experience. Note that, the

DFA may have enough competitors to fulfil the approximation requirements, but still

produce large approximation error due to the lack of samples used in the updating of

their parameters.

In the same way, there would be many other sources of large approximation errors

different from the lack of competitors. For instance, in RL, a large error may be pro-

duced by the variations of the target function during the learning process, that may

cause new observations to be different from previous ones, at the same regions. De-

pending on how flexible is the method used for the parameters adaptation, the poor

approximation may be improved by just waiting for a new adaptation of the param-

eters, rather than generating new competitors. Another source of error may be the

eventual stochastic nature of the target function. This may produce large errors in

punctual estimations as a consequence of outliers generated randomly from the under-

lying probability distribution.

In our approach we will assume that a large error is caused either by a lack of

experience, or by a lack of competitors, since the other mentioned sources of error are

difficult to quantify. This incomplete evaluation of the approximation error may incur

in an over-generation of competitors. Fortunately, the over-generation of competitors

may just imply more chances of having a good competitor among the competing ones,

without affecting negatively the convergence rate. Note that, contrarily to our case,

the over-generation of parameters is actually a problem for most of the non-parametric

FA approaches, since it represents an increment in the number of experiences required

for convergence. Despite DFA is in principle benefited from the over-generation of
1Actually, the initial number of competitors could be arbitrarily chosen, as far as all the points of

the target function domain are covered, at least, by one competitor.
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competitors, we control the proliferation of them using a mechanism for competitor

elimination. This is done to prevent an excessive computational cost for storing and

processing all of them.

In order to evaluate when a poor approximation is caused by the lack of experience,

we adopt the criterion of defining a threshold, nc, for the minimum number of experi-

ences that should be collected in a competitor domain to consider the estimations of

its parameters as confident,

nmin > nc, (5.7)

where

nmin = min
Φi∈Φx

ni, (5.8)

where Φx is the set of active competitors. In turn, to evaluate the accuracy in the

approximation we set a threshold for the minimum error allowed in the approximation

of the winner competitor, ec,

(f(x)− μw(y|x))2 ≥ ec. (5.9)

If both thresholds, nc and ec, are surpassed then we assume that the source of error is

the lack of competitors and the generation mechanism is triggered. Many generation

strategies can be applied. We propose two complementary ways of generating new

competitors: generation of a competitor from a combination of two existing ones, and

generation of a competitor from an specialization of the winner competitor.

5.2.1.2 Generation from Combining Two Competitors

One strategy for competitor generation is to generate a competitor based on the infor-

mation provided by two active competitors (3.2). These competitors are the competitor

which has the least prediction error at the experienced point, and the winner competi-

tor. The domain of the new competitor will be formed by the intersection of the domains

of the two selected competitors. We choose this strategy as we consider that the region

delimited by the intersection of the domain of the competitor with least error and the
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Figure 5.1: Illustration of the generation from splitting for a 2D domain. The domain of
the winner competitor is painted in green, and those for the new generated competitors
are shown in blue.

winner competitor has more chances to be well approximated by the GMM provided

to the new competitor. Generation is carried out whenever the resulting domain does

not coincide with a domain of an active competitor. Otherwise, the generation is only

carried out from specializing the winner competitor.

5.2.1.3 Generation from Specializing the Winner Competitor

Generation from specializing the winner competitor is carried out by splitting the do-

main of the winner competitor in three overlapped domains of half the size of the

domain of the winner competitor, as illustrated in figure 5.1.

The splitting is performed along the dimension of the domain of the winner com-

petitor where the samples are more disperse 1. The dispersion along dimension d is

calculated from the marginal variance in d from the GMM of the winner competitor,

σ2
d =

K∑

j=1

αj(σ2
d,j + (μd,j − μd)2), (5.10)

where μd,j is the expected value of the probability obtained by marginalizing in pw(x, y)

1It may occur that, all the domains tried from splitting are already considered for other competitors
domain. In this case, the splitting is carried out along the next dimension with largest dispersion. In
the unusual, though possible, case that the splitting is already tried for all the dimensions, then the
next most relevant competitor, i.e. the successor of the winner, is selected for splitting.
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all the variables except d, and

μd =
K∑

j=1

αjμd,j. (5.11)

Generation from splitting the winner competitor complements the generation from

combination of two active ones, as it permits to increase the resolution to any extent,

which would not be possible by only generating from the combination of two competi-

tors.

Initialization of the GMM of New Competitors

Every new competitor is initialized with a GMM of K Gaussians. In case the competitor

domain contains the experienced sample, one Gaussian is initialized with a mean vector

equal to the experienced sample (xt, yt). The rest of the Gaussians are initialized with

mean vectors with components for the domain variables provided by points selected

randomly in the input space, and with component for the output variable given by the

inference of the DFA system at the selected inputs.

The covariance matrix of each new Gaussian is initialized to a diagonal matrix,

with components for the domain variables given by a percentage C of the span of the

variable inside the competitor domain. The component for the output variable is the

variance of the output, estimated from the DFA system, at the inputs selected to create

the mean vectors.

Finally, the accumulator of the number of samples of each new Gaussian is initialized

to 1.

5.2.1.4 Elimination of Competitors

The strategy adopted for the generation of competitors is not exempt of producing

competitors which do not improve the accuracy in the approximation. Some of the

new competitors may be equally, or less, accurate than other existing ones. Some

others may improve the accuracy at early stages after their generation, but turn out

to be less precise in later stages of the learning process due, for instance, to the non-

stationarity of the target function. However, the inaccuracy of a competitor does not
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Algorithm 6 Degenerate Function Approximation with GMMs
initialize the degenerate function, F(x), using a set of competitors Φ whose domains
form a covering of the target function domain.
initialize the GMMs of each competitor with a set of K Gaussians.
loop

get observation (x, y)
get the active competitors Φx

update the parameters of the GMM of each active competitor using online EM
(section 4.3.1)
get the minimum number of samples nmin (5.8)
select the winner competitor in x, Φw(x)
calculate approximation error e = (y − Φw(x))2

if nmin < nc & e < ec then
generation from combination
generation from splitting

end if
if modulo(iterations/itred) = 1 then

eliminate redundant competitors from Φx

end if
end loop

necessarily imply that the competitor is useless for the system. For example, even

though a competitor has large approximation error, it may be the best the system has

so far at some points of the domain.

Then, to control the proliferation of competitors we do not eliminate competitors

which are inaccurate, but competitors which have not won in the last na times they

were active. At a predefined number of iterations itelim, we eliminate all the competitors

that fulfil the elimination criterion.

5.2.2 Algorithm for the DFA using Probability Density Estimations

The complete algorithm for the online, memory-free, degenerate function approximation

using probability density estimations is presented in algorithm 6.
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5.3 Q-Learning with a Degenerate Function Approxima-
tion

We are now in position to describe the mechanisms for FA in Q-Learning in continuous

state and action spaces with a DFA using probability density estimations, named as

the DFARL method. As usual, the samples of the target function will consist on the

q-values derived from the sampled version of the Bellman equation,

q(s, a) = r(s, a) + γ max
a′ (Q̂(s′, a′)), (5.12)

where r(s, a) is the immediate reward obtained after executing action a in state s, s′ is

the state observed after the action execution, and Q̂(s′, a′) is the approximation of the

action-value function at (s′, a′) provided by the DFA system, Q̂(s′, a′) = Φw(s′, a′) =

μw(q|s′, a′). To compute the value q(s, a) we need to solve the maximization problem

max
a′ (Q̂(s′, a′)). We adopt the same strategy as before of computing the values Q̂(s′, a′)

for a finite number of actions, and then taking the value of the action that provides the

largest Q as the approximated maximum.

5.3.1 Exploration-Exploitation Strategy

For action exploration we use the strategy as in section 4.7.1, selecting for each action

to be evaluated a value trand obtained randomly from a t-distribution with nw(s, a)− 1

degrees of freedom, and finding the corresponding value,

Q̂rand(s, a) = Q̂(s, a)− trand
Sw(s, a)√
nw(s, a)

, (5.13)

where Q̂(s, a) = Φw(s, a) is the value inferred by the DFA system at (s, a), S2
w(s, a)

is the variance estimation at (s, a) , and Ṽwnwpw(s, a) is an estimation of the number

of samples nw(s, a) characterized by the statistical values at (s, a). Once a Q̂rand(s, a)

value has been assigned for every evaluation (s, a), the action to be executed is selected

using the greedy policy as

a = argmax
a′

Q̂rand(s, a′). (5.14)
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5.4 Performance Evaluation

In order to assess the generality and efficiency of the approach we will consider three

different tasks that cover the basic type of difficulty in control problems [70]: avoidance,

which consists in keeping the system into a valid region of the state space; goal reaching,

where the system is requested to reach a goal area of the state space, finishing the task

when it gets there; and regulation, where the system is also requested to reach a goal

but, contrary to finishing the task when this happens, it should stay there using active

control.

To implement these tasks we will use three standard benchmarks of Reinforcement

Learning. The avoidance control task will be implemented with the cart-pole balancing

benchmark that consists in keeping a cart and a pole into an acceptable working region

by movements of the cart. The goal reaching task will be implemented by the mountain-

car benchmark, where a car should reach a goal position at the top of a mountain,

point in which the task is finished. Finally, the regulator task will be implemented

by the inverted pendulum benchmark, where an under-actuated pendulum should be

balanced from the downward position until it reaches the upward position in which it

should be stabilized using active control. These benchmarks permit to assess not only

the generality and efficiency of the DFARL method but also its scalability since the

cart-pole balancing benchmark has two more dimensions than the other benchmarks.

5.4.1 Comparison with Other Methods

In order to compare the performance of our approach with that of other RL approaches

we should consider some factors. Since our approach is memory-free and model-free, its

convergence speed is only directly comparable with those of model-free and memory-free

approaches. However, for those approaches that are memory-based, e.g. fitted value

iteration methods, an indirect comparison is possible by comparing, for instance, the

number of times the system needs to be updated until a good performance is achieved.

Model-based approaches are not considered for comparison.

In particular, the performance of our approach will be directly compared, in all

the benchmarks, with the best configurations found empirically for the methods of a

GMMRL approach, presented in chapter 4, and a memory-free version of the Variable
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Resolution (VR) (see appendix A), this last to provide a general efficiency reference.

In addition to these comparisons, we will provide comparisons with other remarkable

state of the art approaches at each particular benchmark, comparisons that will be

direct or indirect depending on whether they are memory-free or not.

5.4.2 A Regulation Problem: the Inverted Pendulum

The inverted pendulum benchmark [30] is depicted in figure 5.2. The problem definition

in this benchmark is the same used in section 4.8 to evaluate the GMMRL method.

Figure 5.2: Inverted pendulum benchmark.

5.4.2.1 Learning Methods Set-up

Table 5.1 compiles the values of the learning parameters for each of the learning meth-

ods. The parameters related to a GMM in the column of the DFARL method corre-

spond to the parametric GMMRL at each competitor.

The covariances of the initial Gaussians for the DFARL and the GMMRL ap-

proaches are determined as

ΣK+1 = C diag{d1, ..., dD , rangq}, (5.15)

where di is the total span of the range of variable i, for the case of the GMMRL, and

the span of the range of variable i inside the competitor domain, for the case of the
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Table 5.1: Learning parameters for the Inverted Pendulum.

Parameter DFARL GMMRL VR
# initial Gaussians K 10 10 –
Initial samples per Gaussian {1}j 0.1 0.1 –
Dispersion factor of initial Gaussians C 0.5 0.2 –
Initial mean vectors for Gaussians μj random random –
Learning rate parameter a 0.001 0.001 0.1
Learning rate parameter b 10 10 10
Reference volume Ṽ 1 1 –
Approximation error threshold ec,g,v 0.025 ∗ rangq 0.025 ∗ rangq 0.025 ∗ rangq

Minimum number of samples nc,g,v 50 200 50
Relative marginal probability βc – 0.1 –
Last activations threshold na 1000 – –
Iterations to check elimination itelim 1000 – –

DFARL; D is the dimension of the domain; and C is a positive value defining the

dispersion of the new Gaussian.

The initialization of the competitors in the DFARL approach consists in a set of 9

competitors whose domains have half of the size of the input space. They are generated

by splitting each variable in three overlapped segments of half of the size of its total

span, and then combining them with the total span of the rest of the variables to form

the competitors’ domains. Figure 5.3 presents an example of competitors generated in

this way for the case of a 2D input space.

Figure 5.3: Example of the domains of the initial competitors in a 2D input space.
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5.4.2.2 Experiments Set-up

The experiments set-up is the same used in section 4.8 for the evaluation of the GMMRL

method. In this set-up, the experiments are performed using episodes of 500 iterations.

At the beginning of each episode, the pendulum is placed in the hang-down position.

At the end of each episode, a test of 500 iterations is performed exploiting the policy

learned so far, also starting from the hang-down position. As the result of the test we

take the sum of the rewards obtained at each iteration. For each experiment we show

the average of 15 independent runs of 100 test episodes.

5.4.2.3 Results

The results, depicted in figure 5.4, show that the DFARL method has a higher conver-

gence rate than the GMMRL approach, and a clearly superior performance than the

VR approach. This is a remarkable result since the GMMRL method has already a

very good performance with respect to other approaches (see section 4.8).
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Figure 5.4: Comparison of the performances of the DFARL, GMMRL, and VR ap-
proaches.

To exemplify the performance of the GMMRL approach when it is provided with

the same amount of initial Gaussians as in the DFARL approach, we carried out an
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Figure 5.5: Comparison of the performance of a GMMRL with 10 initial Gaussians, a
GMMRL with 100 initial Gaussians, the DFARL, and the VR methods.

experiment initializing the GMMRL with the same total number of Gaussians consid-

ered initially by the DFARL, i.e. K = 10 × 10 = 100. The results, presented in figure

5.5, show that the convergence rate of the GMMRL with 100 initial Gaussians, is lower

than when using 10 initial Gaussians. For the GMMRL with 100 initial Gaussians

the performance is worst likely due to the fact that the system must simultaneously

balance a large number of parameters (in fact, 100 Gaussians is more than required,

since the GMMRL with 10 initial Gaussians reaches convergence with an average of

about 65 Gaussians). We would like to remind that, in the DFARL, each competitor

constitutes an independent parametric GMMRL method with convergence properties

of a GMMRL with 10 Gaussians. Increasing the number of competitors, and therefore

the total number of Gaussains, does not slow down the convergence of the DFARL ap-

proach since each competitor must only balance their own parameters, independently

of those of other competitors.

To provide an idea about the proliferation of competitors, the DFARL approach

achieves a good performance with an average of 201 competitors, and an average of 2

competitors eliminated. We present in figure 5.6 an example of 2D histograms showing

the number of overlapped competitors in 2-dimensional projections of the 3-dimensional
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Figure 5.6: Number of overlapped competitors in the projected spaces (θ, θ̇), (θ, a), and
(θ̇, a), for the inverted pendulum task.

state-action space. In general, we can observe a proliferation of competitors in most

visited regions, and in regions where a more precise control is required. For instance,

in figure 5.6(a) we can observe a larger proliferation of competitors in the region close

to the goal state, s = (0, 0), where a more precise control is necessary to keep the

pendulum balanced. In this figure, and in figure 5.6(b), we can also observe that more

competitors were generated in regions with angular position θ ∈ [2, 2.5]. This region is

crucial for the control task since, when the pendulum reaches this region after being

swung from the downward position, it has already enough potential energy to reach

the upward position by applying a high action in the opposite direction.
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5.4.3 A Goal Reaching Problem: the Mountain-Car

The benchmark problem of the mountain-car [81] consists in driving an underpowered

car up a steep mountain road (figure 5.7). The difficulty of the problem is that the

force exerted by the gravity is larger than the force of the engine of the car. Then,

in order to climb the mountain, the car needs to first move away from the mountain

up to the opposite slope, and then apply maximum acceleration to accumulate enough

inertia to reach the tip of the mountain.

Figure 5.7: Mountain-car benchmark.

The equations modelling the dynamics of the car are,

pt+1 = bound [pt + vt+1] , (5.16)

vt+1 = bound [vt + 0.001at + (−0.0025) cos(3pt)] , (5.17)

where pt is the car position at time t, vt is the car velocity, and at is the discrete

action consisting in the car acceleration forward, at = 1, backward, at = −1, or no

acceleration at = 0. The operator bound keeps the position and velocity in the intervals

[−1.2, 0.5] and [−0.07, 0.07], respectively. The car arrives at the goal position whenever

the condition pt = 0.5 is achieved, in which case the reward is r = 0 and the episode

terminates. In any other case the reward is r = −1. When the car reaches the left

position bound, its velocity is set to 0. For this task the discount coefficient γ is set to

0.999.
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5.4.3.1 Learning Methods Set-up

Table 5.2 summarizes the values of the parameters used for each of the learning meth-

ods.

Table 5.2: Learning parameters for the Mountain-car.

Parameter DFARL GMMRL VR
# initial Gaussians K 10 10 –
Initial samples per Gaussian {1}j 0.1 0.1 –
Dispersion factor of initial Gaussians C 0.2 0.2 –
Initial mean vectors for Gaussians μj random random –
Learning rate parameter a 0.001 0.001 0.1
Learning rate parameter b 20 10 20
Reference volume Ṽ 1 1 –
Approximation error threshold ec,g,v 0.005 ∗ rangq 0.005 ∗ rangq 0.005 ∗ rangq

Minimum number of samples nc,g,v 100 200 100
Relative marginal probability βc – 0.1 –
Last activations threshold na 5000 – –
Iterations to check elimination itelim 5000 – –

In this problem, we use an independent DFARL approach for each of the discrete

actions, defined in the 2-dimensional state space (pos, vel). Each DFARL system is

initialized with 22 competitors. 16 competitors are generated as parts of a 4 × 4 grid

that covers the state space. The rest of competitors are generated by splitting each

range of the state variables in three overlapped segments, and building competitors

whose domains are defined using one of these segments, and the whole range for the

rest of the variables, as exemplified in figure 5.3.

5.4.3.2 Experiments Set-up

To permit a more exhaustive evaluation of the DFARL approach we will use the same

experimental set-up as in [93] to test the Adaptive Tile Coding method (ATC) in the

same benchmark of the mountain-car. The ATC is a novel online memory-free function

approximation method that is simple and computationally efficient, and that proved to

work efficiently in this benchmark. In short, the ATC represents the input space using

a multi-partition scheme (see section 2.3.2). The approach is non-parametric since it
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automatically searches for the appropriate granularity at each partition following a

general to specific strategy, splitting parts in two halves along a dimension selected

according to one of two alternative splitting criteria: a value criterion, that estimates

how much the value function will change if the part is split along that dimension, and a

policy criterion, that estimates how much the policy will change if the splitting occurs.

In the experiments, we implement training episodes of 300 iterations, or until the

car reaches the goal position. After 600 updates, a test episode exploiting the policy

learned so far is carried out during 300 iterations, or until goal is reached. As the result

of the test we take the sum of the rewards obtained at each iteration. Both, training

and test episodes are initiated in a state selected randomly. For each experiment we

show the average of 15 independent runs.

5.4.3.3 Results

The results are presented in figure 5.8. The performance of the DFARL approach is

significantly better than the performance of the global GMMRL and VR methods.
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Figure 5.8: Comparison of the performance of the DFARL, GMMRL, and VR methods
in the mountain-car task.

Regarding the number of competitors generated, considering the three actions, the
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DFARL achieves a good performance with an average of 1509 competitors and an

average of 390 competitors eliminated. To show the distribution of the competitors

generated, we provide in figure 5.9 the 2D histograms of the competitors generated for

each of the three actions considered. In general, we can observe a larger proliferation

of competitors at the most visited regions, and in regions more crucial for the task. For

instance, in the histogram for action 1 (figure 5.9(c)), we observe that more competitors

were generated in regions with positive velocities, mainly at positions close to the goal,

where a positive action would help the car to reach the top of the mountain. For the

action -1 (figure 5.9(a)), instead, the proliferation of competitors takes place mainly

at negative velocities in positions around the valley, where a negative action would

help the robot to gain enough potential energy in climbing the opposite mountain, to

afterwards reach the goal with maximum positive acceleration.

To more exhaustively evaluate the DFARL approach, we compare the results ob-

tained with those reported in [93] for the Adaptive Tile Coding algorithm. For compar-

ison, we adopt the same evaluation criteria they use to evaluate the ATC, of considering

that a good policy is achieved when the reward accumulate in test episodes reaches the

-100 value, and that a near optimal policy is achieved when the accumulated reward

is close to -50. From the results reported in [93], the ATC achieves a good policy in

about 400,000 updates, and raises above -60 at approximately 2,800,000 updates. Our

approach achieves a good policy in only 62,000 updates, and raises over -60 at 360,000

updates.

5.4.4 An Avoidance Problem: the Cart-Pole Balancing

The Cart-Pole Balancing benchmark [18] consists in a pole mounted on cart that has

to be stabilized inside an acceptable region by the motions of the cart (figure 5.10).

The cart is free to move in an acceptable range within a 1-dimensional bounded track,

and the pole moves in a vertical plane parallel to this track.

The equations for the model of the cart-pole system are
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Figure 5.9: Number of overlapped competitors in the state space for actions -1, 0, and
1, in the mountain-car benchmark.
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Figure 5.10: Cart-pole balancing benchmark.

θ̈ =
g sin θ + cos θ

[
−F −mplθ̇ sin θ + μcsgn(ẋ)

]
− μpθ̇

mpl

l
[

4
3 − mp cos2 θ

mc+mp

] , (5.18)

ẍ =
F + mpl

[
θ̇ sin θ − θ̈ cos θ

]
− μcsgn(ẋ)

mc + mp
, (5.19)

where x is the cart position, θ is the angular position, mp, is the mass of the pole, l is

the length of the pole, mc is the mass of the cart, F = a is the control action, consisting

in the acceleration applied to the cart, g is the gravity constant, and μc and μp are

the friction coefficients of the cart and the pole, respectively. The parameters of the

model are set to mp = 0.15kg, mc = 1.0kg, l = 0.75m, and g = 9.81m/s2. The friction

coefficients are set to 0. The action takes values within the interval [−50, 50]N . To

solve the maximization max
a

(Q̂(s′, a)) in (5.12), we use a set of actions obtained from

a uniform sampling of the action variable with period 2. The actuation frequency is

60 Hz. The discount coefficient is set to γ = 0.95. The acceptable region of the pole

is defined by −π/6 ≤ θ ≤ π/6, and the one corresponding to the cart is defined by

−1.5m ≤ x ≤ 1.5m. The reward function selected varies linearly from 0 at the bound
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of the acceptable angle for the pole, to 1 at the vertical position. Reward is -1 when

either the pole or the cart leaves its acceptable region.

The cart-pole benchmark is of interest since it involves a 5-dimensional state-action

space, (s, a) = (x, ẋ, θ, θ̇, a), two more than the inverted pendulum and mountain-car,

and serves to illustrate the scalability of the algorithm.

5.4.4.1 Learning Methods Set-up

Table 5.3 presents the values of the parameters used for each the learning methods for

the problem of the Cart-Pole Balancing.

Table 5.3: Learning parameters for the Cart-Pole balancing.

Parameter DFARL GMMRL VR
# initial Gaussians K 20 20 –
Initial samples per Gaussian {1}j 0.1 0.1 –
Dispersion factor of initial Gaussians C 0.2 0.2 –
Initial mean vectors for Gaussians μj random random –
Learning rate parameter a 0.001 0.001 0.1
Learning rate parameter b 25 15 25
Reference volume Ṽ 50 50 –
Approximation error threshold ec,g,v 0.025 ∗ rangq 0.025 ∗ rangq 0.025 ∗ rangq

Minimum number of samples nc,g,v 100 100 50
Relative marginal probability βc – 0.1 –
Last activations threshold na 1000 – –
Iterations to check elimination itelim 1000 – –

We provide the DFARL system with an initial set of 15 competitors generated by

splitting each range of a variable in the state-action space in three overlapped segments,

and building competitors whose domains are defined using one of these segments, and

the whole range for the rest of the variables, as illustrated in figure 5.3.

5.4.4.2 Experiments Set-up

The set-up for the experiments is basically the same used in [63, 64]. A training

episode starts in a random state obtained from a normal distribution with mean vec-

tor μ0 = (0, 0, 0, 0) and covariance matrix Σ0 = diag(0.1, 0.1, 0.1, 0.1). Each training
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episode lasts 5 seconds or until the system fails in keeping the pole, or the cart, in

the acceptable region. After 10 seconds of simulated training time, a test episode is

performed. Each test episode consists in averaging the sum of rewards obtained during

runs of 5 seconds of simulated time, or until failure, starting at four different positions of

the pole: −10 ◦,−5 ◦, 5 ◦, 10 ◦, with the cart centred on the track. For each experiment

we calculate the average of 15 independent runs.

5.4.4.3 Results

Figure 5.11 presents the results of the experiments where the maximum possible reward,

estimated by exhaustive manual tuning, is also shown. Note that the different perfor-

mance between the DFARL method and the GMMRL is even larger than in the case of

previous comparisons. We attribute the superiority the DFARL over the GMMRL and

VR methods to its better generalization capabilities which become more important as

the dimensionality of the state-action space increases. GMMRL required, in average, a

final amount of 400 Gaussians to reach convergence, while DFARL required, in average,

about 222 competitors with 20 Gaussians each. Note that, even if the total number of

Gaussians in DFARL is much larger, many competitors are updated in parallel at each

iteration, and each of them has to adjust a much smaller set of parameters than the

GMMRL and in a smaller region of the domain.

Regarding the number of competitors involved in the learning, a good performance

is achieved with an average of 222 competitors, as mentioned above, and an average

of 64 competitors eliminated. To provide an idea of the distribution of the generated

competitors, we present in figure 5.12 the number of competitors overlapped in pro-

jections in the (x, ẋ), (θ, θ̇), and (x, θ) spaces. As in previous cases, it can be seen a

higher number of overlapped competitors at frequently visited regions, like around the

(0, 0, 0, 0) state, and in those regions where the control of the system is more challeng-

ing. For instance, in the (x, ẋ) projection (figure 5.12(a)), there is a proliferation of

competitors in positions of the cart around ±0.5 with velocities that would make the

system to fail, reaching positions close to the border, if no corrective action is applied

(for instance, positive velocities for positive positions of the cart). Note that a more

detailed analysis of the proliferation of competitors using 2D projections is actually
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Figure 5.11: Comparison of the performance of the DFARL, GMMRL, and VR methods
in the cart-pole balancing task.

very complicated for this task since they only provide a poor information about the

actual distribution of competitors in the 5-dimensional space.

5.4.4.4 Evaluation in the Stochastic Case

To assess the validity of the DFARL approach in stochastic domains, and to compare

with the state of the art approach of Natural Actor Critic (NAC) [63], we evaluate

its performance using a stochastic model of the dynamics described by p(st+1|st, at) =

N(st+1,
∑

T ), where st+1 is obtained as usual from equations ( 5.18) and (5.19), and

ΣT = 0.01Σ0.

Learning Methods Set-up

The setting of the learning parameters is basically the same used for the deterministic

case (table 5.3), with the only difference of the dispersion of the initial Gaussians C for

the DFARL approach, which is set to 0.5 instead of 0.2. This is so to prevent competi-

tors generated from outliers to prematurely win. Note that a larger C diminishes the
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Figure 5.12: Number of overlapped competitors in the projected spaces (x, ẋ), (θ, θ̇),
and (x, θ), in the benchmark of the cart-pole balancing.
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initial value of the sample density at the input space, pi(x), and so its initial relevance

(5.2).

Results

The results of the experiments for the stochastic case are shown in figure 5.13. In

the figure we also indicate an estimation of the maximum possible cumulative reward

that may be obtained with the stochastic model. This reference was calculated from

averaging the cumulative reward of 10 test runs in the stochastic model using a set

of competitors generated in the previous experiments, whose performance for the de-

terministic case is near optimal. As seen from the figure, the DFARL approach also

outperforms the GMMRL and VR approaches.
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Figure 5.13: Comparison of the performance of the DFARL, GMMRL, and VR ap-
proaches using stochastic state transitions in the cart-pole balancing task.

Finally, to provide a reference with respect to the state of the art, we observe that

DFARL approach for the stochastic case reaches a good performance after about 4

minutes of simulated time, while [63], using a Natural Actor-Critic (NAC) approach,

reported convergence after 10 minutes. Despite these results are remarkable, they

should not be interpreted as a direct comparison with the NAC since it is a policy
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search approach and since, in [63], it is only provided the curve for the expected re-

turn over updates in the training phase, which is not an indicator of the actual control

performance of the system but of the convergence of the parameters of the policy ap-

proximation. Instead, in our case, we provide the sum of cumulative rewards obtained

in test episodes as an indicator of the control performance. Therefore, the results pre-

sented should be interpreted only as an indicator that our approach has an acceptable

learning speed, in a range comparable to the state of the art.

5.4.5 Discussion

In all the tasks, the DFARL method achieves a near optimal performance and presents

faster learning speed and more stable convergence profiles than the GMMRL and VR

approaches, demonstrating its generality and robustness. These results support our

claim that it is advantageous to use a collection of function approximators defined on

overlapping regions of the whole domain that compete between them to provide the

best estimation at each point, instead of using a single global approximator of arbitrary

complexity.

In particular, the results highlight two characteristics of the DFARL method: lo-

cality and scalability.

Locality

Locality is important in the mountain-car task since it permits to better keep the infor-

mative reward obtained only when the goal is reached, avoiding it from being forgotten

in the long run when many samples are observed with negative reward. The superior

performance of the DFARL approach in this task is partly caused by its capability of

keeping the approximation at each competitor unaltered by samples outside the com-

petitor domain. In contrast, the GMMRL gets this relevant information more easily

forgotten since the approximation at the goal region is also affected from samples at

other regions of the domain. This may explain the more unstable convergence pro-

file of the GMMRL method in the mountain-car compared with that of the other two

problems.
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Note that locality is also a feature of the VR approach, where each part is only

updated from samples inside the part. This explains the good performance of the VR

approach in the mountain-car task in comparison with that of the other two problems.

Scalability

The scalability of the DFARL approach is evidenced from the very good results obtained

in the cart-pole balancing task, which has two more dimensions than the other tasks. In

problems with large domains, a global approximator needs to balance a large number of

parameters to achieve a good approximation at all the regions. This demands a lot of

training experiences. In contrast, in the DFARL approach, each competitor has to deal

with a reduced approximation problem since the approximation is carried out in a small

region, usually much smaller than the entire domain of the problem, using a reduced set

of parameters. This results in that each competitor requires much less experiences to

converge. This, added to the fact that many competitors are updated in parallel with

each experience, makes the DFARL approach appealing for high-dimensional problems.

On the Computational Cost

As expected, the computational cost of the DFARL method is higher than that of

the GMMRL method. For instance, the amount of Gaussians stored for the DFARL

approach is much higher than the Gaussians stored in the GMMRL. To give a more

quantitative idea, the approximated number of Gaussians stored by the DFARL ap-

proach when a good performance is achieved is 2000, 15000, and 4400 for the inverted

pendulum, mountain-car (considering all the actions), and cart-pole tasks, respectively.

In these tasks, the corresponding number of Gaussians for the GMMRL approach is 45,

600, and 400. In this way, the number of Gaussians stored in the experiments by the

DFARL is, at least, one order of magnitude larger than the GMMRL case. However,

in the performed experiments, the increase in computation time was always less than

one order of magnitude. This relatively small difference in the computation time is

explained by the fact that, at each training instance, only the Gaussians of the active

competitors are considered, whose number is only few times higher than the total num-

ber of Gaussians of the GMMRL approach. For instance, in the cart-pole benchmark,

the average number of active competitors per training instance is 60, which leads to
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an amount of 1200 Gaussians. This number is just three times higher than the 400

Gaussians used by the GMMRL approach.
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Chapter 6

Conclusions

The main conclusions of the thesis are the following:

• In function approximation (FA) problems, trying many different approximators

in parallel increases the opportunities of obtaining a good approximation than

trying only one. If the best approximator is selected at each input, the competitive

strategy achieves a good approximation faster and with a more stable convergence

profile than a single function approximator. These properties are enhanced as

more approximators are considered for the competition.

• A key aspect in the competitive strategy is the proper definition of the relevance

function that, associated to each approximator, would permit to select the best

approximator in a point. In this regard, in order to perform a correct selection of

the best approximator at a given input, the relevance function should be point-

dependent, instead of global.

• All the point-dependent estimations necessary to implement the competitive strat-

egy for FA can be obtained from a probability density estimation in the joint

input-output space. These point-dependent estimations are: an estimation of

the approximated function, an estimation of the variance in the approximation,

and an estimation of the density of samples in the input space. The last two

estimations are used for a point-dependent estimation of the relevance of the

approximator.
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• A probability density estimation represented with a Gaussian Mixture Model

(GMM) is suitable to be used for FA in Reinforcement Learning (RL). The ap-

proach, called GMMRL, has a performance comparable with the state of the art.

Despite estimating the density in the joint input-output space is more demand-

ing than learning a simple function approximation, the approach works efficiently

since it allows using the simple and efficient Expectation-Maximization algorithm

to rapidly obtain accurate estimations of the parameters of the model.

• The competitive strategy for FA in RL, the DFARL, which uses a GMM in each

approximator, significantly outperforms the GMMRL approach and other state

of the art approaches.

• Biased sampling is inherent to online RL and constitutes a serious problem for

most FA methods. Therefore, for a FA method to succeed in RL, it has to properly

deal with the biased sampling problem. We note that:

* Conventional online updating formulas, which use a time-discounted for-

getting, are not robust to the biased sampling problem since they replace

old values based on time. In this case, the regions sampled long time ago

get their estimations forgotten, no matter how well they are approximated,

unlearning the approximation at those regions.

* The probability density estimation with a GMM permits implementing an

updating formula robust to the biased sampling problem with a forgetting

based on the new information provided rather than on time, preventing the

undesired effects produced by time-dependent forgetting.

* Locality of the competitors in DFARL makes the approach even more robust

to the biased sampling problem since the approximation at each competitor

remains unaltered when the sampling occurs outside the competitor domain.

• Using a probability density estimation for FA in RL permits obtaining the prob-

ability distribution for the cumulative reward at each input, which can be used

to devise different information-based strategies for exploration-exploitation.

127



6.1 Future Work

6.1 Future Work

There are several possible improvements to the GMMRL and DFARL methods that

could be explored. Below we enumerate some of them.

Gaussian Management

For the generation of new Gaussians in the GMMRL approach, we have only consid-

ered the generation by adding new Gaussians since it is simple and showed to work

efficiently, with little distortion in the approximation. An open research in this aspect

is how to generate Gaussians by splitting existing Gaussians, without distorting the ap-

proximation achieved so far. Another possible aspect to tackle is Gaussian elimination,

which is necessary to control an excessive proliferation of Gaussians.

Competitor Management

One of the most direct improvements that can be made to the DFARL approach may

be the definition of a better strategy for competitor generation to search for regions

that can be well approximated by the competitor functions. So far we have proposed a

simple general to specific strategy that starts with coarse competitors domains that are

subsequently split or combined based on heuristic rules. However, many other strate-

gies for competitor generation can be explored. For instance, the system could search

for regions of the domain where the estimation of the variance is higher, and generate

many alternative competitors there. Another possibility would be to follow simulta-

neously both, a general-to-specific strategy and a specific-to-general strategy, which

may increase the chances of finding the proper granularity when the value function is

unknown.

Managing Competitors and their Gaussians at the Same Time

We could combine the improvement in the approximation obtained with the generation

of competitors with the improvement of the approximation capabilities of each individ-

ual competitor by simultaneously performing competitor and Gaussian management.

For instance, we could initialize each competitor with a small number of Gaussians and
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allow the generation of new ones until some predefined number, e.g. ten, to keep the

approximation simple. A more challenging possibility would be to make the approx-

imation of each competitor non-parametric, by removing the limit in the number of

Gaussians. This would rise the interesting question of deciding when it would be better

to improve the system by creating a new competitor or by increasing the complexity of

the existing ones.

Trying Different Function Approximators

Another line to explore with the DFARL approach would be to use other types of

function approximations for the competitor function, different from the GMMRL, at

the expense of needing to separately approximate the relevance function. Depending on

each specific problem, some FA methods may perform better than others, and usually

the designer has no means to know beforehand which one to select. In this case, the

DFARL approach could be made to allow trying different FA in parallel so as to select

the best one at every region of the input space.

Dimensionality Reduction

In many high-dimensional applications, the value function may largely depend on the

values of some domain variables, which are said to be relevant variables, while pre-

senting no dependency, i.e. no variations, along other irrelevant ones. Moreover, the

relevancy of a variable may be different at different regions of the domain. When this

characteristic is present in a domain, and when the number of relevant variables in

each region is small with respect to the total number of variables, the domain is said to

be categorizable [66]. Categorizable domains are interesting since irrelevant variables

could be neglected in the function used for the approximation, which could drastically

reduce the dimensionality problem. However, finding which variables are relevant in

which regions is not an easy problem. Some strategies have been developed to exploit

the categorization property in discrete domains with suggesting preliminary results

[1–5, 66].

We believe that the DFARL approach provides a suitable base to extend these

methods to continuous domain applications. This could be implemented by generating

competitors that try approximations considering different set of variables, which are
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presumably relevant for the approximation. Note that it may be possible to find large

regions that can be well approximated with a simple function, but which require to

consider all the variables since the approximated function presents variations along all

of them. On the contrary, we may find regions where many variables become irrelevant,

but the function present complex variations along the relevant ones, being not possible

to perform a good approximation with a simple representation. Then, the competitors

generated may not only try approximations considering different variables, but also

considering different function complexities.
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Appendix A

Q-Learning with a Variable
Resolution Function
Approximation

This appendix describes the VR algorithm used for comparison in the experiments of

chapter 5. We implement an online memory-free version of the Variable Resolution

approach. Variable Resolution is a state aggregation technique (section 2.3.2) that

represents the value function, or the action-value function, using a partition of the state-

action space, where each part aggregates the states, or state-action pairs, covered by

that part. The algorithm is non-parametric since it automatically varies the resolution

of the parts according to the approximation requirement.

In the partition, a part i has associated an estimation of the action-value Qi =

Q̂(s, a) that is assigned to all the state-action pairs (s, a) covered by the part. Qi

estimates the average of the experienced q-values in the part calculated as

q(s, a) = r(s, a) + γ max
a

Q̂(s′, a) (A.1)

where r(s, a) is the immediate reward obtained after executing action a in state s, s′ is

the state observed after the action execution, and Q̂(s′, a) is the approximation of the

action-value function at (s′, a), provided by the part containing (s′, a). In the online

memory-free approach the values q(s, a) are used to update Qi using the incremental
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formula for discounted average estimations,

Qi = Qi + ηi (q(s, a)−Qi) (A.2)

where ηi is the learning coefficient. In our implementation, we use as learning coefficient

a function of the form,

ηi =
1

a νi + b
, (A.3)

where νi is the number of samples experienced so far in the part, and a ∈ (0, 1] and

b ≤ 0 are predefined parameters.

For the action exploration we use the same strategy as in section 4.7.1, of obtain-

ing an action-value Q̂rand(s, a) for each evaluated action through the formula (4.65),

rewritten here for convenience,

Q̂rand(s, a) = Q̂(s, a)− trand
S(s, a)√
n(s, a)

, (A.4)

where trand is a value obtained randomly from a t-distribution with n(s, a)− 1 degrees

of freedom, and then, selecting the action with highest Q̂rand(s, a) for its execution.

To allow the computation of (A.4), we need an estimation of the variance of q of the

state-action pairs covered by the part, S2
i = S2(s, a), and an estimation of the number

of samples ni = n(s, a). The variance S2
i is estimated with an incremental formula

analogous to A.2,

S2
i = S2

i + ηi

(
(q(s, a)−Qi)

2 − Si

)
. (A.5)

For the estimation of the number of samples ni we may just use a counter of the number

of samples experienced so far inside the corresponding part. However, this would be

correct only if the estimations Qi and S2
i are calculated without forgetting, i.e. when all

the samples experienced in the past are equally important, in which case the learning

coefficient would just be 1/νi. On the contrary, when a forgetting of past estimations is

considered, old values have lesser influence in Qi and S2
i and should not be completely

considered in ni. It can be shown [9] that the actual number of samples used in Qi
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and Si is, in the general case, ni = 1/ηi. We will use this estimation for the number of

samples ni.

Partition Management

In the implementation of the VR approach we will use an initial representation con-

sisting in a grid formed by ND parts, where N is the number of segments in which the

range of each variable is divided, and D is the dimension of the state-action space.

To evaluate the approximation, we adopt the same criteria as in the cases of DFARL

and GMMRL, of considering that a poor approximation is carried out when the ap-

proximation error is high, above a predefined threshold,

(q(s, a)− Q̂(s, a))2 ≥ ev, (A.6)

and when the number of samples experienced in the part fulfils

νi > nv, (A.7)

so as to consider the estimations as confident.

When both criteria are surpassed, the part containing the experienced (s, a) is split in

two halves along the dimension where the length of the part is highest in relation to

the total span of the corresponding variable.
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[94] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr. Cognitive Agents - A

Procedural Perspective relying on the Predictability of Object-Action-Complexes

(OACs). Robotics and Autonomous Systems, 57(4):420–432, 2009.

142


	1 Introduction
	1.1 Reinforcement Learning
	1.2 Generalization in Reinforcement Learning
	1.3 Our Proposal
	1.4 Objective
	1.5 Contributions
	1.6 Outline of the Document

	2 Reinforcement Learning
	2.1 Markov Decision Processes and Dynamic Programming
	2.2 Reinforcement Learning
	2.2.1 Temporal-Difference
	2.2.2 Actor-Critic
	2.2.3 SARSA
	2.2.4 Q-Learning
	2.2.5 Policy Search

	2.3 Generalization in RL
	2.3.1 Problems of Function Approximation in RL
	2.3.2 State-Aggregation Techniques
	2.3.3 Linear Combination of Basis Functions
	2.3.4 Neural Networks
	2.3.5 Gaussian Processes

	2.4 Q-Learning with Function Approximation

	3 Degenerate Function Approximation
	3.1 Introduction
	3.1.1 A Competitive Strategy for Function Approximation: General Concept

	3.2 Degenerate Function Representation
	3.3 Degenerate Function Approximation
	3.3.1 Relevance Function
	3.3.2 Competitor Management
	3.3.3 Algorithm for the DFA

	3.4 Conclusions

	4 Q-Learning using Probability Density Estimations
	4.1 Introduction
	4.2 The Gaussian Mixture Model
	4.3 The Expectation-Maximization algorithm
	4.3.1 Online EM

	4.4 Function Approximation using Probability Density Estimations
	4.4.1 Gaussian Management
	4.4.2 Algorithm for the FA using Probability Density Estimations

	4.5 Variance Estimation using Probability Density Estimations
	4.6 Estimating the Number of Samples in a Region
	4.7 Q-Learning using Probability Density Estimations
	4.7.1 Exploration-Exploitation Strategy

	4.8 Performance Evaluation
	4.9 Conclusions

	5 Q-Learning with a Degenerate Function Approximation
	5.1 Introduction
	5.2 Degenerate FA using Probability Density Estimations
	5.2.1 Competitor Management using Probability Density Estimations
	5.2.2 Algorithm for the DFA using Probability Density Estimations

	5.3 Q-Learning with a Degenerate Function Approximation
	5.3.1 Exploration-Exploitation Strategy

	5.4 Performance Evaluation
	5.4.1 Comparison with Other Methods
	5.4.2 A Regulation Problem: the Inverted Pendulum
	5.4.3 A Goal Reaching Problem: the Mountain-Car
	5.4.4 An Avoidance Problem: the Cart-Pole Balancing
	5.4.5 Discussion


	6 Conclusions
	6.1 Future Work

	Appendices
	A Q-Learning with a Variable Resolution Function Approximation

